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Will be discussed the convective- diffusion and average-concentration models in
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for qualitative and quantitative analysis of the chemical and catalytic processes in industrial
column apparatuses. Will be discussed the calculation problems of the process simulations.
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IIbnen Texct

The fundamental problem of the one-phase processes modeling in the column apparatuses
comes from the complicated hydrodynamic behavior of the flow and as a result the velocity
distribution in the column is unknown. This problem can be avoided using a new approach
on the basis of the physical approximations of the mechanics of continua [1-4].

One-phase fluid motion in cylindrical column apparatus [4] with radius " [m] and active
zone height | [m] will be considered. The convection-diffusion model is possible to be
obtained from ((1.3)—(1.5)), where (in the case of one-phase fluid motion) the phase index
i=123 s possible to be ignored. As a resut ©=1 (£=5=0) g & =1 (&=2=0y
U (rnz)=u(r.z) v,(rz)=v(rz) ¢ (trz)=c(trz) QC;)=Q(cuCrmiC,)i=12 iy,

éc.  oc o’c. laéc o
SR A
Z 0

0 or oz® ror or?
r=0, %y, =r, %EO;
or or
2=0, ¢ =c’, uocf’zuci‘]—Di%; i=12,...,i,
oz (0.0.1)
The axial and radial velocity components “("2) and V("2 satisfy the continuity equation
(1.4).

1 Column Chemical Reactor
The main process in one-phase column apparatuses is mass transfer of a component of the
moving fluid complicated with volume chemical reaction. The quantitative description of



this process in column chemical reactors is possible if the axial distribution of the average

concentration © () over the cross-sectional area of the column is known:
t=c(z), 0<z<l, t(0)=c’, t(l)=c',

¢

G="+-—, c’>¢,
C (0.1.2)
where 2=0(z=1) is the column inlet (outlet) and G is the conversion degree. Two main
problems are possible to be solved on this basis:
- modeling (design) problem, ie., to obtain | if G and % are given;

- simulation (control) problem, i.e., to obtain G if  and % are given.

The axial distribution of the average concentration c(2) is to be obtained as a solution of
the mass transfer model equations. The modeling problems of the column chemical reactors
are possible to be solved using a convection-diffusion type model.

1.1 Convection-diffusion type model

In the stationary case the convection-diffusion model of a two component chemical reaction

in the column apparatuses [3] has the form:
2 2
u%+v%:Di a(;i+1%+ai‘ +Q(c,c,), =12,
oz or oz ror or (0.1.2)

where Di11=12 are the diffusivities of the reagents in the fluid [mP.s™'].

The axial and radial velocity comporents “("2) and ¥("2) satisfy the continuity equation:
ou ov v

5+5+F:0; r=r, v(n.z)=0, z=0, u=u(r,0). 0.13)
The model of the mass transfer processes in the column apparatuses (2.1.2) includes
boundary conditions, which express a symmetric concentration distribution (r=0),
impenetrability of the column wall ("=%), a constant inlet concentration ¢ i=12, [ko-

mol.m?] and mass balance at the column input (z2=0), ie. the inlet mass flow (U'OCiO ) is

- . - - 0 . . — .
divided into a convective mass flow (Y%) and a diffusion mass flow (=D; oc;/2z):
r=0, %EO; r=r, %50;
or or
z=0, ¢ =c’, uocozuc.O—D.% i=12,

(0.1.4)

where U’ [ms '] is the velocity at the column input. In (2.1.4) it is supposed that a
symmetric radial velocity distribution will lead to a symmetric concentration distribution,

too. The term Q(ec,), =12 in (2.1.2) represents the volume chemical reaction rate
(chemical kinetics model).

The mass transfer efficiency (%) in the column and conversion degree (Gi) are possible to
be obtained using the inlet and outlet average convective mass flux at the cross-sectional
area surface in the column:

gi:uocio—%Iru(r,l)ci(r,l)dr, G = ?‘o, i=12
fo o U (0.1.5)
The average values of the velocity at the column cross-sectional area can be presented as



U(z):%jru(r,z)dr, V(z):%frv(r,z)dr,
fo o k. (0.1.6)
The velocity distributions assume to be presented by the average functions (2.1.6):

u(r,z)=u(z)a(r,z), v(r,z)=v(z)¥(r,z), (0.1.7)

where a(r.2),9(r.2) represent the radial non-uniformity of the velocity distributions
satisfying the conditions:
%jlra(r,z)drzl I (r,z)dr=1.
o 0 0 (018)
A differentiation of “("2) in (2.1.7) with respect to 2 leads to:
ou duU+_6u

oz dz oz (019)
Practically, the cross-sectional area surface in the columns is a constant and the average

velocity is a constant too (du/dz=0, @=u’), ;o ou/ez=0 j a/ez=0 (u=u(r), a=d(r)).

In this case (practically ©9/92=0 in column apparatuses with big radius values, where the
laminar boundary layer thickness at the column wall is negligible with respect to the
column radius value) from (2.1.3) follows:

dv v

—+—=0; r=r, v=0

dr r (0.1.10)
and the solution is (=0 This leads to a new form of the convection-diffusion type

model [4]:

ac o%c, loc. 0%
=D, L+——+—|+Q (c,,C,);
o [é‘z2 ror arzj Q(ene)
r=0, %Eo; r=r, oc,
or o
2-0, ¢ =c’, uwc’=uc’~D, % i-12
oz

(0.1.11)

The presented convection-diffusion type model (2.1.11) is possible to be used for the
gualitative analysis of different chemical processes in the column apparatuses.

1.2 Complex chemical reaction kinetics

The complex chemical reaction rate is a function of the reagent concentrations. When the

reaction rate is denoted by y and the reagent concentrations by *-+*n the next model
equation will be used:

Y= (%) (0.1.12)
The function f (like models of all physical processes) is invariant regarding the dimension
transformations of the reagent concentration, i.e. this mathematical structure is invariant
regarding similarity transformations [3]:

% =kx, i=l..m (g113)

k=p(ky ... k). (0.1.14)



From (2.1.14) it follows that is a homogenous function, ie. the relation between the
dependent and independent variables in the models is possible to be presented
(approximated) by a homogenous function, when the model equations are invariant
regarding similarity transformations.
A short recording of (2.1.14) is:

fRl=¢lk]fIx]. (0.1.15)
The problem consists in finding a function f that satisfies equation (2.1.15). A
differentiation of equation (2.1.15) concerning K leads to:

otx]_o¢ ..

ok ok (0.1.16)
On the other hand

of[x]_of[x]ax _of [x]

d X kT (0.1.17)
From (2.1.16) and (2.1.17) follows

of [%]

——x=b f[x],

o, (0.1.18)
where

(2
[

J (0.1.19)

result % =*:1=1-M and from (2.1.18) follows

1ot b

Fox % (0.1.20)
i.e.

f=cx. (0.1.21)

When the above operations are repeated for *2:--*n the homogenous function f assumes the
form:

F=onXi's (0.1.22)
i.e. the function f is homogenous if it represents a power functions complex and as a result
is invariant with respect to similarity (metric) transformations.
The result obtained shows that the chemical reaction rate in (2.1.11) is possible to be
presented as

%zQi (c..c,)=kclc;, i=12. 0.1.23)
1.3 Two components chemical reaction

Let's consider a complex chemical reaction in the column and S ("2) =12 are the
concentrations [kg-mol.m™] of the reagents. In this case the model (2.1.11) has the form:



ac, [62Ci 14 azcij
u—="D, + +— |-

(0.1.24)
The qualitative analysis of the model (2.1.24) will be made using generalized variables [3]:
r=rR, z=1Z, u(r)=u(r,R)=u’U(R), G(r)=0a(r,R)=U(R),

c¢(r.z)=c(nR1Z)=cC/(R,Z) (i=12), ‘92(:_0]’ (0.1.25)

0 A0 H . A .
where o160 (1=12) aro the characteristic (inherent) scales (maximal or average values)
of the variables. The introduction of the generalized variables (2.1.25) in (2.1.24) leads to:
ac, ( d°C, 14C, &C,
U—=F0|e—+=-—"+—
oY dZ° R AR R

R=0, ﬁzo; R =1, %EO;
oR oR

]— Da, C"C;;

z-0, C =1 1=U-pe %,

oz (0.1.26)

Da, =60""Da’, Pe, =

_ Dl Ul
’ i D 1

_UOrOZ
0

Dai":E—‘:(cf)ml(cg)n, 03 i-12

where Fo, Da and Pe are the Fourier, Damkohler and Peclet numbers, respectively.

1.4 Comparison qualitative analysis

As already noted [3, 4] when variable scales in (2.1.25) the maximal or average variable

values are used. As a result the unity is the order of magnitude of all functions and their

derivatives in (2.1.26), ie. the effects of the physical and chemical phenomena (the

contribution of the terms in (2.1.26)), are determined by the orders of magnitude of the

dimensionless parameters in (2.1.26). If all equations in (2.1.26) are divided by the

dimensionless parameter, which has the maximal order of magnitude, all terms in the model

equations will be classified in three parts:

The parameter is unity or its order of magnitude is unity, i.e. this mathematical operator

represents a main physical effect;

The parameter’s order of magnitude is 10", ie. this mathematical operator represents a
small physical effect;

The parameter’s order of magnitude is <107, ie. this mathematical operator represents a
very small (negligible) physical effect and has to be neglected, because it is not possible to
be measured experimentally.

Here and throughout the book it has to be borne in mind that the process (model) is
composed of individual effects (mathematical operators) and if their relative role

(influence) in the overall process (model) is less than 10“they have to be ignored, because
the inaccuracy of the experimental measurements is above 1%.
1.5 Pseudo-first-order reactions

Fo.



0 0
In the cases of big difference between inlet concentrations of the reagents (¢ <) in

(2.1.24) the problem described by (2.1.26) is possible to be solved in zero approximation

_ -2 _
with respect to the very small parameter 6(0=0<10%) and as a resut P2 =0.C, =L Very
often m=1 and from (2.1.26) follows:

2 2
v _ ko g%+l§+% —-DaC; e=Fo'Pe™;
0z dZ° ROR @R

rR=0, Lo r=1 Lo, z-0, c=1 1=U-Pe &,
R R az'  (0.1.27)

where ©=Ci.Da=Da} and model (2.1.27) of column apparatuses with pseudo-first-order
chemical reaction is obtained. The parameters ¢ and Fo are related with the column radius

'» and as a result the convection-diffusion type of model (2.1.27) is possible to be used for
solving the scale-up problem.

1.6 Similarity conditions

From (2.1.27) follows that two mass transfer processes in column apparatuses are similar if
the parameters values of F®DaPe and & are identical, i.e. these parameters are similarity
criteria. In the real cases when the difference between two similar processes is in the

parameter values %!t $=12 from the similarity conditions follows:

2

DI® kl® u®|® re

Fo=——5, Da=—_-, Pe= ,oe=| 2|, s=12
u’r, u D I

' (0.1.28)
From (2.1.28) follow three expressions for the characteristic velocity:
oDy MG DPeVE o,
JergFo' ~ JeDa ¢ 0.1.29)

ie. the similarity criteria 7 D2 are incompatible, because from (2.1.29) follows, that (at
constant values of F%D2a and ¢ ) the increase of the radius ™ (from laboratory model to
industrial apparatus) leads to decrease and increase of the velocity U™ simultaneously. The
increase of the radius % is not possible to be compensated by the changes of velocity u™
(practically the change of Tis not possible to be compensated by the changes of D and k).

These results show that the physical modeling is not possible to be used for a quantitative
description of the mass transfer processes in column chemical reactors, ie. the convection-

diffusion model with radius % is not physical model of the real process with radius 5 if

5 #1- The similar situation exists in two-phase processes with chemical reaction.

2 Model Approximations

The presentation of the models in generalized variables [3] permits to obtain different
approximations of the models, ie. the approximations of small (~ 10%) and very small (
<107 negligible) parameters.

2.1 Short columns model

_ 2 _ il ~107Y). . - .
=(n/1) =Fo"Pe™ i & small parameter (£-10%). {o Pe'<10"Fo ang

pe (Pe’l < 10*1)

For short columns

for Fo<1 the next small parameter is " In these cases the problem (2.1.27) is
possible to be solved using the perturbation method (see Chapter 7 and [6]):



C(R,2)=C"”(R,2)+¢C"(R,Z)+&’C?(R,Z)+..., (0.2.1)
C(O),C(l),c(z)

where - are solutions of the next problems:
(0) ©  H2c0
p Y o[ 1Y FCV) o
oz R &R 4R
() ()
R=0, € _o roy &£ =0;
R R
z=0, c”=1 0.2.2)
(s) ) 520 20
UaC = 1aC +8C2 —DaC(S+F06C2
oz R &R 0R oz
(s) s)
R=0 oC =0; R=1 oc =0;
R
Z=0, C(S) EO; S=1,2,.... (023)
A multi-step procedure has to be wused for soling (2.22) and (2.2.3):
o’
1. Solving (2.2.2) and calculating oz*
2~ (s-1)
o'c ,$=12,....

2. Solving of (2.2.3) and calculating ~ Z°
2.2 High-column model
For high columns ¢ is a very small parameter and the problem (2.1.27) is possible to be

. . . . =< -2 . - _
solved in zero approximation with respect to £(0=¢<10 ) ie. Pe"<10”Fo gnd for Fo<1

. - =Pe1<107?), . )
the next very small parameter is Pe” (0=Pe*<10%), ie. C=C:

2
UL R L, 0C 1 pac;
oz RoOR OR

R=0, ﬁzo; R=1 @Eo; Z=0, C=1.
R oR (0.2.4)

2.3 Effect of the chemical reaction rate

The effect of the chemical reaction rate is negligible if 0=Da<10” and from (2.2.4) follows

C=1.

When fast chemical reactions take place (Paz10°), the terms in (2.2.4) must be divided by

Da and the approximation 0=Da" <10 has to be applied. The result is:
2
O—E(l dC+d CJ—C; R=0, Z—CR:EO; R =1, d—CEO,

DalRdR dR® (0.2.5)
i.e. the model (2.2.5) is diffusion type.
2.4 Convection types models
_ -2
In the cases of big values of the average velocity (0=Fo<10%), from the convection-

diffusion type model (2.1.27) is possible to obtain a convection type model when putting
Fo=0:

U(R)j—gz—DaC; Z=0 C=1.

(0.2.6)



3 Effect of the radial non-uniformity of the velocity distribution

The radial non-uniformity of the axial welocity distribution influences the conversion

degree, concentration distribution and scale effect.
3.1 Conversion degree

As an example will be used the case [4] of parabolic velocity distribution (Poiseuille flow):

u(r):a[z_zé}
fo (0.3.1)
From (2.1.25) and (2.3.1) follows

U(R)=2-2R". (4 3 )

The solutions of the problem (2.2.4) for Da=12 gnd Fo=0.0110 nermjts to obtain C(R.Z)

and € (Z)=t(2)/c, :

5(2):2.1[RC(Z,R)dR.
0 (0.3.3)

As a result it is possible to obtain (Table 2.1) the conversion degree (2.1.5) in the cases of

presence () and absence (G) of a radial non-uniformity of the axial velocity in the

column:

G :1—2] RU(R)C(R,1)dR, G,=1-C(1).
0 (0.3.4)
Table 2.1. Conversion degree

Table 1.1 shows that the radial non-uniformity of the
axial velocity component leads to substantial decrease
of the conversion degree, but an increase of the
diffusion transfer (Fo) leads to decrease of the
convective transfer (all hydrodynamic effects) and as a
result the effect of the radial non-uniformity of the
axial velocity decreases.

3.2 Concentration distribution

G Go
Da 0.556 0.6734
Da 0.593 0.6452
Da 0.621 0.6281
Da 0.780 0.8516
Da 0.811 0.8502
Da 0.848 0.8538

Different expressions for the welocity distribution in the column apparatuses permit to
analyze [4] the influence of the welocity distributions radial non-uniformities on the

concentration distribution:

2
_ _ r
u’ =, ul(r)=02-2—|;
rD
ré
2 s 4
0 0

us(r) =U[1+a A

where n=1 is the Poiseuille flow.

], §=23 a,=2 a=-2,0b,=-3 b =3

(0.3.5)

From (2.3.5) it is possible to obtain the following dimensionless velocity distributions

U (R)=u’(r)/u:



U°(R)=1 U'(R)=2-2R?, U?(R)=1+2R?-3R*,
3

U*(R)=1-2R*+3R*, U*(R)==-R
2 (0.3.6)
The differences between maximal and minimal velocity values AYs =Us™ ~Us (s=1..4)
are the velocity distribution radial non-uniformity parameters

(AUl =2, AU, =AU, :f, AU, =1j. S . . _
3 The velocity distributions Y -+U"- are presented on Fig.
2.1.

The numerical solutions of (2.2.4) using different velocity distributions (2.3.6) present the

effect of the velocity radial non-uniformity on the conversion degree (G) and column height
(H) in comparison with the plug flow.
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Fig. 2.1 Velocity distributions: x-U°; +-U*; o-U?%; *-U?; o-U*
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Fig. 2.2 Concentration distributions using the 5 velocity profiles: x-U%; +-UY; o-U?; *-U3;

o-U*

The concentration distributions obtained with the solution of (2.2.4) for Fo=0.1 gnd Da=2

are shown on Fig.2.2.

Table 2.2 presents the values of the conversion degree

G, at Da=2 gng F0=0.010.1.

The column heights £ =HuHs for which the maximum conversion degree of the plug
flow & =0.8643(0.8645) is reached, were calculated.
Table 2.2 Process Fo uY u?t VB u®
efficiency G at Z = 1 and 0.1 Gy = G, = G, = Gy =
column height H = Z at Go laboratory 0.8643 08143  0.8516  0.8513
=0.8643 Ho=1 H = H, = Hy =
Table 2.3 presents the 1.2 1.05 1.05
effect of the wvelocity 0.01 Gy = G, = G, = Gy =
radial  non-uniformity industrial 0.8645 0.7870 0.8349 0.8371
on the relative Ho =1 H = H, = Hy =
conversion degree 1.34 1.12 1.12
and column height at
G, = 0.8643:
a6, =2 =C 100, an, =H=Ho 100 5123,
G, H, (0.3.7)
where G is the conversion degree in the case of plug flow.
Fo U u* U’
0.1 AG1 AG; AG3
laboratory = = =
6% 1.4% 1.5%
AH1 AH, AH3




Table 2.3 Effect of the velocity radial non- 20% 5% 5%

uniformity on the process efficiency and 0.01 AG1 AG» AG3

column height industrial = = =
The numerical results (Table 2.3) show 9.8% 3.5% 3.3%
the necessity of an  essential AH; AH> AH3
augmentation of the column height in = = =
order to compensate the velocity 34% 12% 12%
distribution radial non-uniformity

effect. The comparison of the results in the Table 2.2 and Table 2.3 show that the effects of
AUzand AYs are similar, ie. the wvelocity distribution radial non-uniformity effects are

caused by the velocity non-uniformity AU, =U UM (s=1d). g ot by the velocity

distribution Ys' (5=1-4).
3.3 Influence of the velocity radial non-uniformity shape
The influence of the shape of the velocity profile and the average welocity value in a
column chemical reactor on the conversion degree has been presented in [8]. The effect of a
simple velocity distribution (Poiseuille type)
2
0<r<R,, u:U(Z—Zr—ZJ
fo (0.3.8)
is compared with three complicated velocity distributions, which shapes change at different

values of P =0o:b:b,.0;-

O(1) 151
5(b)_ R022_r02 Jgrch(rz)drz F(b):[_(b)}_l

~ 2In(1+h) _Ry -1
I:(b)_bz+2b—(bz+2b+2)|n(1+b)' T

(0.3.9)

where % =0 (Poiseuille type flow), % =1D0.=0420,=011 A5 3 result two convection-
diffusion equations are considered:

2
Wop(1%8,20)
oz ror o
2
UZ%:D iai+a 022 —ke,.
oz r, or, o, (0.3.10)
The boundary conditions of (2.3.10) are:

r=0, B_o =R, Z_p
o, or,
oc, oc,
L=r,=r, ¢ =¢C, —=—2%;
1 2 0 1 2 5[’1 arz

z=0, ¢ =¢c,=¢C,. (0311)



The introduction of the dimensionless variables

Ul(Rl) = U1(r1)a Uz(Rz) = (rZ)’

T T
C(R.Z)=2, C,(R,Z)=-2,

G ¢ (0.3.12)
in (2.3.8)-(2.3.11) leads to

2
%:Fo iacl+acz1 —DaC,,
0z R 0R, 0R

U,(R)=2-2(1+b)'R}, OSRiﬁlfbj

Ul

U,

2
o 152,75 e,
oz R, R, R
2
UZ(RZ)zF(bi){(l+bi)2 RZ-1- 20 +h In(1+b)R, |,

In(1+b,)

1
1+b,

<R, <1

(0.3.13)

rR-0 Li_g g-1 &
oR, oR,

=0;

R=R-—1 C=C, % %0123
1+b oR, 0R,
2=0 G=C =1 (0.3.14)

The dimensionless velocity profiles in (2.3.13) are shown on Figs. 2.3 through 2.6.

At the boundary condition Ri=R, given by (2.3.14), the concentrations have to be
presented as a polynomial by three parameters:

1
R=R=r— i=123

Ci(R.Z)=C,(R, Z) =1+aZ +a;z* +aiZ’, (0.3.15)

where the parameters a8, 1=123 me to be obtained by the minimization of the
function:
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Fig. 2.6 Dimensionless velocities profiles (2.3.13) at b = bs = 0.42
1
F(a,a,a)=[f(al,a,a,2)dz,
0

2
’

f (ol al,al,2) = [ (ol a2l 2) -t (a2t 5.2 )

alea )0 | aadz- 5]
R =R, 2 /Ry=R,

(0.3.16)
The obtained parameter values 2:2::3. =123 are presented in Table 2.4.

Fo, b ai, as, a3 G Go




Table 2.4 Parameters Da
values and values of -0.2807,-0.1735,
conversion 0 0.04094 0.3722  0.3934
degree Fo —0.8000, 0.4553
; A1 ' T ' 0.3794
Fig. 2.7 presents =0.05 0 -0.1502
three cases of the Da —0.8035, 0.6453,
Cong_emraﬂon 05 042 _ Dees 0.3846  0.3866
gradient —0.8169, 0.7366,
difference 1 —0.3487 0.3867
f(al,a),a,z), =123, —0.9902,0.4558
0 ’ ' 0.5938 0.6321
which show that —0.09779
the conditions Fo —1.4869, 1.2044,
0.11 0.6072
=0.1 —0.4319
R=R= Z_%:Z%, 5%1,2,3, 0.42 :(1)'23415’ LIS3S, 6186 06320
i 2 :
(0.3.17) ~1.3204, 1.1857, |
are satisfied. ' —0.5171 0.6229
These  solutions 0 _(1)-22‘2"211-60081 08241  0.8650
permit to obtain —u.
the conversion F82 0.11 _fggjg'g’ 3.0105, 0.8386
degree (2.3.4) and =Y. -1
the resutts for Da 042  23088,243%0, 44518 08645
different values of = —1.0111
Da and Fo are 1 _22008, 22693, 0.8572

presented in Table

—0.9443

2.4, where it is seen that the conversion degree increases if the average velocity increases.
The impact of the different shapes of velocity profile (b0 = 0, bl =1, b2 = 0.42, b3 = 0.11)
on the column apparatus efficiency is negligible compared with that of Damkohler number.
The concentration profiles C1(R1,Z), C2(R2,Z), which are solution of (2.3.13) for Fo = 0.1,

Da =1, b; =1 and column height Z =0.1; 0.3;0.5; 0.7; 0.9, are shown on Fig. 2.8.
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3.4 Scale effect

The analyses [1, 3, 8, 9] of the influence of the column size on the mass transfer efficiency
shows that the process efficiency in column apparatuses decreases with the column
diameter increase. This scale-up effect is a result of the radial non-uniformity of the
velocity distribution.



r,=0.2[m], Da=2, Fo=0.1)

Let us consider “model” column ( and “industrial” column

(f, =0.5[m], Da=2, Fo=001) [7]. The scaling effects on the conversion degrees ACws: and

column heights  AHsa -

GS _G-S HS _HS

AGg,, =—"—— 100%, AH/ =%.100%, s=1,...3,

scale scal

Ging (0.3.18)

are possible to be obtained using Table 2.2. The results obtained are shown in Table 1.5.
The comparison between the two columns on the basis of (2.3.7) (AQmod , AQing) and
(2.3.18) (AHmod , AHing) shows that the scale—up leads to decrease of the conversion degree
(for constant column height). If consider the columns with constant conversion degree, it
leads to the column height increase as result of the column radius increase.

Table 2.5. Comparison of the scaling effect U U* U’
between different velocity profiles AGgcale 3.5% 1.9% 1.7%
3.5 On the “back mixing” effect AHscale 11.6% 6.6% 6.6%

The reduction of the conversion degree in
the column chemical reactors, resulting from the radial non-uniformity in the velocity
distribution in the cross sectional area of the column, is explained [9-12] by the mechanism
of a back mass transfer (“back mixing” effect). The new approach for modeling of column
apparatuses [1-5] permits a new explanation of this effect [27].

Let us consider a pseudo-first order chemical reaction in a high column (2.1.27). The
concentration distributions in the column as solutions of (2.1.27) was obtained in the case
of £=0.05 using the perturbations method [6]. As a radial non-uniformity in the velocity
distribution in the cross sectional area of the column will be used

U=2-2R"  (0.3.19)
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Fig. 2.9 Concentration distributions C(R,Z) for ¢ = 0.05, Fo = 1, Da = 1 and different Z:
U =2 - 2R? (solid lines); U =1 (dotted lines)
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Figs. 2.9 and 2.10 present comparison of the results obtained in the cases Fo = 1, Da = 1
and Fo = 0.1, Da = 1 for different values of Z (solid lines) with the case of absence of the
radial non-uniformity in the velocity distribution U =1 (dotted lines).

-

From Figs. 2.9 and 2.10 it is possible to obtain the average concentrations C(Z):

C(z)=2[RC(R,Z)dR
0 (0.3.20)
The results are presented on Fig. 2.11.

1

09

08+

0.7+

QO

06

05F

04+




Fig. 2.11 Average concentration C(2):
(1) e = 005 Fo = 1, Da = 1; U = 2 — 2R* (solid lines); U = 1 (dotted lines).
(2) ¢=0.05, Fo=0.1, Da =1; U =2 - 2R? (solid lines); U =1 (dotted lines).

The convection-diffusion mass flux in the column j [kg-mol.m?.s'] is possible to be
presented as

. acl, ~aoc.
J(r,z):uc—Dgradc:{u(r)c(r,z)—D—}z—D—r,
oz or (0.3.21)
or in generalized variables (2.1.25) as:
J(R,Z):J(Z'j):[U(R)C(R,Z)—Pe1£}2—g0'5 pet Cp,
u'c oz R (0.3.22)

where ¥ and Z are the unit vectors, U=2-2R* C _ the solution of the problem (2.1.27).
From the solution it is seen (Figs. 1.9 and 1.10) that in (2.3.22)
U(R)C(R,Z)>0, @so, ﬁso,
oz oR (0.3.23)

i.e. the vector components of J(R,Z) are positive and there are no conditions for a backward
mass transfer (“back mixing” effect).

The mass flux in every point (r,z) in the column (see the lines on Figs. 2.12 and 2.13) is
possible to be obtained from (2.3.21):

or in generalized variables (2.1.25):

(0.3.24)

J(RZ)= J'lfr(;Z) :{[u (R)C(R,Z)_pelz_gT {go.s o T

0.5
0.0 :| } !
R (0.3.25)
where Pe? = ¢Fo.
The average mass flux in the cross sectional area of the column in generalized variables
(2.1.25)
J(2)=2[RI(R,Z)dR
0 (0.3.26)
IS presented on Fig. 2.14.
The conversion degree is possible to be obtained using the difference between the average
mass fluxes in the cross sectional area at the column’s ends:

10 (03.27)
and the results are presented in Table 2.6.
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Fig. 2.12 Mass flux J(R,Z) for different Z: U = 2 — 2R%, ¢ = 0.05, Fo = 1, Da = 1 (solid
lines);
U=1,=0.05Fo=1, Da = (dotted lines)
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Fig. 2.13 Mass flux J(R,Z) for different Z: U = 2 — 2R?, ¢ = 0.05, Fo = 0.1, Da = 1 (solid
lines);
U=1,¢=0.05 Fo=0.1, Da = (dotted lines)
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mass flux J(2):
(1) e = 005, Fo = 1, Da = 1; U = 2 — 2R? (solid lines); U = 1 (dotted lines).
(2) ¢=0.05, Fo=0.1, Da =1; U =2 - 2R? (solid lines); U = 1 (dotted lines).

Table 2.6 Fo = Fo =

Conversion degree 1, U= Fo = 0.1, U Fo =
It is seen from Table 2.6 2 - LU= =2 - 9'1’ U
that the conversion degree 2R? 1 2R? =1

fae;i;ﬁasﬁgnf‘jni?orﬁt‘;“ of the 70) 10634 10473 10085  1.0049
velocity distribution in the J(1) 0.4137 0.4048 0.4080 0.3716
cross sectional area of the G 0.6110 0.6135 0.5954 0.6302
column. As was shown, this
effect cannot be explained by “back mixing” effect, but may be explained by the residence
times of the flows in the column.

The radial non-uniformity in the wvelocity distribution in the cross sectional area of the
column leads to flows with different axial velocities, different residence times and chemical
reaction times of these flows, which results in non-uniformity of the concentration
distribution in the cross sectional area of the column. The conversion degree is related to
the average residence time and the average reaction times in these flows in the column.

Let us consider the cases of presence (u = u(r)) and absence (u = u®) of radial non-
uniformity in the velocity distribution in the cross sectional area of the column. The
residence times of the flows in the column in these cases are:

a(r)zl_ Ho:I_

u(r)” 7 v (0.3.28)
The average residence times at the cross sectional area of the column are

— 2% —
0=—|r——dr, 6,=—.
rol u(r) u (0.3.29)




The using of generalized variables (2.1.25) and % as a scale leads to

0(r)=6,0(R), 6,=6,6, 0= @ -=1

U(R) (0.3.30)
and the dimensionless average residence times are:

1
@=2IRLdR, e, =1.
0

U(R) (0.3.31)

09
08+
0.7+
06

D 0.5

0.4

03+

0.2+

0.1}

0

0 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9 1
R,

Fig. 2.15 Average residence time @(R) in the interval (O,Ry)
Fig. 2.15 presents the average residence time for different values of R; in the interval (0,1):

Ry

— 1 R
e =— | ——dR.
(R Rf!l—Rz (0.3.32)

It can be seen, that in the interval °SRi<09 @(R)<6 =1

conversion degree in this interval.
A comparison of the average mass fluxes in the intervals (0,R;) and (Ry,1):

I(&,z):%TRJ(R,z)dR, J‘Z(Rl,z)zﬁjRJ(R,z)dR

which explains the low

(0.3.33)
and the average mass flux (2.3.26) in the interval (0,1) for Fo = 1, 0.1; Z = 1, Ry = 0.9 (see

Table 2.7, where 3o (1) is the average mass flux (2.3.26) in the interval (0, 1) in the case U

= 1) reveals that in the interval (O,R;) the residence time O(R)

is less, the average mass flux
L (R.Z) is larger and the conversion degree is less than in the case U = 1. The average
mass flux J.(R.Z) is much smaller than the average mass flux L (Ru2) and, as a result, the

average mass flux (2.3.26) in the interval (0,1) is larger than the average mass flux Jo(l),
L.e. the conversion degree is less than in the case U = 1.



The

Table 2.7 Fo=1 3 (1)=0.4137 3,(1) =0.4048 3,(0.9,1) = 0.4902 3,(09,1) = 0.0875
J

Fo=0.1 (1) = 0.4080 J,(1)=0.3716 3,(0.9,1) = 0.4920 3,(0.9,1) = 0.0496

pres
ented theoretical analysis shows that the reduction of the conversion degree in the column
chemical reactors, which results from the radial non-uniformity in the velocity distribution
in the cross sectional area of the column, is not possible to be explained by the mechanism
of a back mass transfer (“back mixing” effect). The new approach for modeling of column
apparatuses permits to provide a new explanation of this effect. The radial non-uniformity
in the velocity distribution in the cross sectional area of the column leads to decrease of the
average residence time of the flow in the column (chemical reaction time), increase of the
average mass flux at the column outlet and thus to decrease of the conversion degree in the
column. This effect increases if the convection part of the convection-diffusion flow in the
column increases due to the average velocity increase or the flow viscosity reduction.

Average Concentration Type Models

In the Part | it was shown that the column apparatuses are possible to be modeled using a
new approach [1-4] on the basis of the physical approximations of the mechanics of
continua, where the mathematical point is equivalent to a small (elementary) physical
volume, which is sufficiently small with respect to the apparatus volume, but at the same
time sufficiently large with respect to the intermolecular volumes in the medium. These
convection-diffusion models are possible to be used for qualitative analysis only, because
the velocity distribution functions are unknown and cannot be obtained. The problem can
be solved by using average values of the velocity and concentration over the cross-sectional
area of the column, ie. the medium elementary volume (in the physical approximations of

the mechanics of continua) will be equivalent to a small cylinder with column radius " and
a height, which is sufficiently small with respect to the column height and t the same time
sufficiently large with respect to the intermolecular distances in the medium. All models in
this part will be created on this basis.

Let us consider a cylinder with radius R=R(%) ina cylindrical coordinate system (r'z’¢),

where "2¢ are the radial, axial and angular coordinates, respectively. The average value of
afunction ("29) at the cross sectional area of the cylinder is:
[[£(r.z.4)ds

T2 ®
) S , (.34)

2n 2 2| R(¢
:I[R<f)] dg, ” (r,z,4)dS = j{jrf rz¢dr}
° g ° (.35)
L
In the practical cases ¢  and the cylinder is circular (R=const) je. from (11.1) and
(11.2) follows:

S =nR?, .[J.f(r,z)d8=2nj.rf(r,z)dr, f_(z):RiJ'rf(r,z)dr.
) 0 0 (.36)



Let us consider a column reactor with radius ™ and height of the active volume !. The
average concentration model will be presented on the base of a convection-diffusion model
in the case of pseudo-first order chemical reaction. Further, if the fluid circulation takes
place, the process is non-stationary and the velocity and concentration distributions in the
column must be defined as:

u=u(r,z), v=v(r,z), c=c(trz), (.37)
i.e. the convection-diffusion model can be expressed as

o oc o (azc 1ac azc] U Vv

—+tU—+V—=D| —F+-—+—|-k¢; —+—+—=0;

ot oz or oz ror or

oz or r
t=0 c=c® r=0, @E; r=r, @EO, v=0:
or or
oc
z=0 c(tr,0)=c(tl), u=u’, u’c(tl)=uc(tl)-D=.
(tr0)=c(tl) (t1)=ue(tl)-D— (.38)

In (11.5) ¢ is the initial concentration, et s the average concentration at the column

outlet (z=1) and inlet (2=0) (as a result of the fluid circulation in the column), U’ is the
average velocity at the column inlet.

From (11.3) follow the average values of the velocity and concentration at the column cross-
sectional area:

2 1 2 1 2 1
u(z)=—=|ru(r,z)dr, V(z)=— |rv(r,z)dr, T(t,z)=—|rc(t,r,z)dr.

3 I 3 I 3 I (.39)
The functions U("2):V(r:2).¢(t".2) iy (11.5) can be presented with the help of the average
functions (11.6):

c(t,r,z)=c(t,z) €(t,r,2), (.40)

where 9(12).9(r.2) anq €(t12) precent the radial non-uniformity of the velocity and
concentration and satisfy the following conditions:

%fr a(r,z) dr=1, % .fr V(r,z) dr=1, %_‘qr ¢(t,r,z) dr=1.
% ™ % 2 (.41)
The average concentration model may be obtained when putting (11.7) into (11.5),

multiplying by r and integrating over r in the interval [0%] As a result, the following is
obtained:
o _ac __ ot .
E+o¢(t,z)u5+ﬂ(t,z)uc+y(t,z)vc_Daz2 C;
oc
t=0, ©(0,z2)=c’: z=0, c©(t,0)=c(tl), —==0,
(0.2 o)=e(u), =0

2 2% _oc 2% o
t, = ~~d 1] tv = I ) tl = V .
alt,z) —J'ruc r, Atz) r02!J'ru—daz r, 7(tz2) r02J;rv—dar r ( 43)
The average radial velocity component V can be obtained from the continuity equation in

(I1.5) if it is multiplied by r? and then integrated with respect to r over the interval [0, ]:



5du+d5ﬁ

2%
—+—u, o&(z)==|r?adr.
7@t o= g

(.44)
If (11.11) is put into (11.9), the average concentration model assume the form:
ot _otT ds)__ do ot .
—+al—+| f+— [UC+poC——= > — ke,
ot oz dz dz 0z
t=0, ©(0,z)=c’; z=0, T(t,0)=C(tl), .y,
oz ( .45)
Practically the cross-sectional area surface in the columns is a constant (o ="St) je,
du
—=0, u=u(r).
dz (.46)
a_
In many practical cases 92 and from (11.7), (11.10) and (11.13) follows:
vogo, U0 _o s _da
o _dZ_' _aZ. (47)
As a result from (11.12) is obtained:
oc  _o0C Oa__ _0%T  _
—+al—+-—UC=D—-kC;
ot oz oz oz

(.48)
In the model (11.15) U is the average velocity of the laminar or turbulent flow in the
column, D is the diffusivity or the turbulent diffusivity (as a result of the small scale
pulsations). The model parameter ¢ is related with the radial non-uniformity of the
velocity distribution and shows the influence of the column radius on the mass transfer
Kinetics. The parameter k may be obtained beforehand as a result of the chemical kinetics
modeling.
The parameters in the model (I1.15) show the influence of the scale-up (column radius
increase) on the mass transfer Kinetics if there exists a radial non-uniformity of the velocity
distribution.
The presented theoretical analysis shows, that in the convection-diffusion and
average concentration models, the velocity components and average velocity are:

u=u(r), v=0, U=const. (.49)

The theoretical procedure (I1.5-11.15) presented in the Part Il will be used for creation of
average concentration models of simple and complex chemical processes in one-phase
column apparatuses. On this basis the effect of the velocity radial non-uniformity will be
analyzed and methods for model parameters identification [1-3] proposed.

The convection-diffusion model of the one-phase systems has the form (2.1.11):



w2 o' +1%+626i +Q (c,c,);
oz ror or? S

oz '
r=0, %EO; r=r, %EO;
or or
z=0, ¢ =c’ u°c°zuc°—D%; i=12

oz o (0.3.50)
The average values of the velocity and concentration at the column cross-sectional area in
one-phase systems follow from (I1.3):

U:%quu(r) dr, T z)=%j‘rci(r,z) dr i=12
%o o 9 (0351)
The functions “("):%("2) can be presented with the help of the average functions (5.0.2):
u(ry=ua(r), c(r.z)=5(2)¢(r.z), i=12 (0.3.52)

where %) and ©("2) yepresent the radial non-uniformity of the velocity and
concentration and satisfy the following conditions:

%frﬂ(r)drﬂ, %frﬁi(r,Z)drzl, i=12.
o o (0.3.53)
The average concentration model may be obtained if (5.0.3) is put into (5.0.1), multiplied

by r and integrated over r in the interval [0, ro]. As a result, the average concentration model
has the form:

_dg do . dg 2% _
T +r02£rQi (6Ce)ar
2=0, T =c’, (d—cj =0; i=12
az Joms (0.3.54)
where
ai(z):%fr a(r)¢ (r,z) dr, i=12
o (0.3.55)

1 Simple chemical reactions
Let us consider the stationary simple chemical reaction case
2 2
uﬁz D 6_(2:+1@+6_(2: —ke;
oz oz ror or
r=0, @EO; r=r, @EO;
or

ac

oz (0.4.1)

1.1 Average concentration model

From (11.3) follow the average values of the velocity and concentration at the column cross-
sectional area:

0

z=0, c¢=c’, u’c®=uc’-D

fo

Uzizjlru(r) dr, E(z):%jrc(r,z) dr.
o % oo 0.4.2)

The functions “("):¢("2) in (5.1.1) can be presented with the average functions (5.1.2):



u(ry=ad(r), c(r,z)=c(z)¢e(r,2), (0.4.3)
where a(r) and ¢(r.2) represent the radial non-uniformity of the velocity and concentration
and satisfy the following conditions:

izjl“](r)dr=1, %Jo.rﬁ(r,z)drzll
T %o %o (044)
The average concentration model may be obtained if (5.1.3) is put into (5.1.1), muitiplied

by r and integrated over r in the interval [0, ro]. As a result, the average concentration model
has the form:

aUd—6+d—aUE:DE—kC;
dz dz dz?
2=0, t(0)=c, €_g
dz (0.4.5)
where
a(z)z—ZOrU(r)é(r,z dr
o % (0.4.6)

represents effect of the radial non-uniformity of the velocity.
The use of the generalized variables

r=rR, z=I1Z, u(r)=0U(R), U(r)z%r)zu(R)

e N _¢(r,z) C(RZ)
c(r,z)=c’C(R,Z), t(z)=c’C(Z), ¢(r,z)= (2) = cz)
C(2)=2[RC(R,Z)dR, a(z)za(IZ)zA(Z)=ZIRU(R)C£R’Z)dR,

2 2 C(Z) " (0.47)
leads to:
A(Z)d—C+d—A5:Pe‘leE—DaC
dz dz dz
z-0, ¢-1 ¥_o
dz (0.4.8)
where Pe and Da are the Peclet and Damkohler numbers, respectively:
al Kl
Pe=—, Da=—.
D u (0.4.9)

The case of parabolic velocity distribution (Poiseuille flow) will be presented as an
example:

2
u :U[Z—Zr—zj, T=u’, U(R)=2-2R%
r‘0

(0.4.10)
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Fig. 5.1 Function A(Z) for Da =1, Fo=0.1, ¢ =0.1.
The use of the velocity distribution (5.1.10) permits to obtain the function AZ) in (5.1.7),

where C(R2) is the solution of the model (1.1.15) for short (¢=10") columns [4]. Fig. 5.1
displays the function A(Z) for Fo = 0.1, Da = 1 showing that the function can be presented
[3, 4] as linear approximation A=&+&Z (8 =123 =025y Aq 3 resylt, the model (5.1.8)

assumes the form:
.

aCc = d*C —
+aZ)—+aC =Pe™ —DaC;

o<
dz (0.4.11)

1.2 Effect of the velocity radial non-uniformity

In the cases of absence of radial non-uniformity of the velocity distribution at the column

Z=0 C-=1

cross-sectional area (plug flow cases) “ =0U(R)=1 and from (5.1.7) follows that AZ)=1,

l.e. the radial non-uniformity of the velocity distribution leads to A(Z)>1.

The equation in (5.1.8) can be modified as

dC 4 d’C dA, =
—=[A(Z)] | Pet—;-(Da+-—-)C|,
dz oz 92" 1 (0.4.12)
i.e. the radial non-uniformity of the velocity distribution leads (A(Z) > 1) to a decrease of

dc/ dz) and the conwversion degree, because
G=C(0)-C(1)

the axial gradient of the average concentration (

the conversion degree is possible to be presented as
1.3 Model parameters identification

Here (until the end) methods for the model parameters identification will use “artificial
experimental data™.



The solution of the model (1.1.27) for short (£=10") columns [5], in the case

—_— —_— 71 —_— —_— - - -
Fo=01, Da=1 Pe’=sF0=005 pormjts to C(ZvR)  pe obtained for different
Z,=01n,n=12,..10 and average concentrations:

2 . (0.4.13)
As aresult it is possible to obtain “artificial experimental data” for different values of Z:
Co,(Z,)=(095+0.1B )C(Z,), m=1..10, Z, =0.In, n=12,...,10, (0.4.14)

where 0B, <1 m=1..10 316 obtained with a generator of random numbers. The obtained

artificial experimental data (5.1.14) are used for illustration of the parameters’ (%)
identification in the average concentrations models (5.1.11) by minimization of the least-
squares functions for different values of Z:

2

10
Q. (3 a,)=>.1C(Z,,85,,8,)-Co (Z,)| . Z,=0.n, n=135,
2 ’ ()] (0.4.15)

where the values of C(Zv2n@:) are obtained as solutions of (5.1.11) for different
Z,=0In,n=135" For the solution of (5.1.11) in the cases of short columns
(Fo=0.1 Da=1 £=10", Pe* =zFo=0.01)

and [5])

the perturbation method is to be used (see Chap. 7
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Fig. 52  Average  concentraton  C(2)  for  Fo=01 Da=1, £=10", Pe”=00L:

line - C(2) - (1.1.27), (5.1.7)
o _ Z=01, a, =1, a,=0.3519, C(Z,3,,a,) _ (5.1.11)
+ _ Z=03, a,=1 a,=0.2707, C(Z,ay,a;) _ (5.1.11)

% _ Z =0.5, a05:l’ a; =0.2162, é(zraos’aﬁ) - (5.1.11)



The solutions (Bn:@n) Nn=135 of the inverse problem for the parameter identification in

the two-parameter average concentrations model (5.1.11) for different values of Z,,

n=135 after the minimization of (5.1.15), are obtained in [4]. These parameter values are
used for the calculations of the average concentration in the model (5.1.11). The obtained

values € (Zn8n8). Z,=0.In, n=135 (e points) are compared (see Fig5.2) with the

“exact” function (5.1.7) of the average concentration C(z) (the line) obtained after solution
of the model equation (2.1.27).

From Fig.5.2 it is evident that the experimental data, obtained in a short column (£ =0.1)
with real diameter, are useful for the model parameters identification.

2 Complex chemical reaction

The theoretical procedure (I11.5-11.15) is possible to be used for the creation of an average
concentration model of the complex chemical processes in one-phase column apparatuses.
The base is the convection-diffusion model:

2
L _D(aci+laci+acj e

e oz ror o’
r=0, %EO; r=r, o =0;
or ar
2=0, c=c’, uoci"zucio—Di%, i=12
oz

(0.5.1)
From (11.3) follow the average values of the velocity and concentration functions in (5.2.1)
at the column cross-sectional area:

fo

=—Iru )=%jrcl(r,z)dr, @(z):%frcz(r,z dr.
fo 0 fo (0.5.2)

The functions U("):&("2).¢2("2) iy (4.1.2) can be presented with the help of the average
functions (5.2.2):

u(ry=ua(r), c(r,z)=c(z)6(r,z), c,(r,z)=c,(z)¢,(r.2) (0.5.3)
where

%jlra(r)drzl J'rc1 (r.2) J'rcz(rz
fo o (0.5.4)

The average concentration model may be obtained when (5.2.3) is put into (5.2.1),

multiplied by r and integrated over r in the interval [0, ro]. As a result, the average
concentration model has the form:

— 2—

a8 9% ge _p 4G sy,

dz dz
z2=0, ¢ (0)=c, d—_o i=12,
dz (0.5.5)
where
ai(z):—zjlra(r)q(r,z)dr, i=12 5(z :—frc (r,z)e; (r,z)dr.
fo 0 (0.5.6)

The using of the generalized variables



r=rR, z=I1Z, u(r)=0U(R), a@):%:u(R),

a,(z):a,(|z):A(z):ziRu(R)Cé';’zz))dR i-12,
N L Cl_(R,Z):Im CZ_(R,Z)}
5(z)=6(1Z)=A 2£R[ &) 1 dR 057)
leads to: ~
A (z)%ﬁz—?c: = Pe;* (:jzczi ~A(Z)Da, C"Cy;
z=0, C =1 OI—Ci=o; i=12,
dz (0.5.8)
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Fig. 5.3 Average concentration C.(2)
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where Pe and Da are the Peclet and Damkohler numbers, respectively:

Pe. :ﬂ, Da, = 6" Da, Da:g(cf)mfl(cg)n, 9:%; i=12.

D u C, (0.5.9)
The model (2.1.26) for the high column (£=0) has the form:
G ( 14C  o°C

i |- pa,CliCy;
oz ROR oR

R=0, ﬁzo; R=1, %EO; 2=0, C =L
R oR

(0.5.10)



The solution of (5.2.10) for M=n=1L Fo; =01 Da =1 1=12, nermjts to calculate the
functions C(2): A(Z). 1=12 A(Z) (5.2.7). The functions Ci(2), 1=12 e presented

on the Figs. 5.3 and 5.4. The functions A(2), =12, A(Z) are presented on Figs. 5.5, 5.6
and 5.7, where it is seen that linear approximations are possible to be used:

A:a0i+a1iZ, i=12, A:A0+AIZ (0511)
and the values of the parameters are:

a, =1.0346, a, =0.0063, a, =1.0708,

a, =0.1297, A, =1.0095, A, =00148. (g5 19)

3. Catalytic processes

The catalytic process is a chemical reaction between three reagents (iO :3) in gas (1=1),
liquid (!=2) or solid (!=3) phase [11]. For definiteness catalytic processes in gas or gas-
solid systems will be discussed.

The catalytic processes are of heterogeneous or homogeneous type. In the first case the
chemical reaction is implemented on a solid catalytic surface, where the first reagent is
connected (adsorbed) physically or chemically with the third reagent (catalyst). The
adsorption leads to a decrease of the activate energy E of the chemical reaction between
the first and second reagents and the chemical reaction rate increases. Analogous effects are
possible in the cases of homogeneous chemical reactions, but they are result of the
dissolved catalytic substances (third reagent), which change the chemical reaction route and
as aresult the general activate energy decreases, t0o.

The modeling of the homogeneous catalytic processes is possible to be realized using the

model (2.1.12) for three component chemical reaction (io:3) and one-phase (1=1)
column, where the concentration (“:) of the third reagent (catalyst) is a constant and the
catalytic effect is focused in the chemical kinetics term Kuca, where the chemical reaction

rate constant K is a function of the catalyst concentration ().

The heterogeneous catalytic processes are a result of the chemical reaction between two
reagents on the catalytic interface, wherein one of them is adsorbed physically or
chemically on the free active sites (AS) of the solid catalytic surface. After the chemical
reaction the physical (Van der Vaals’s) or chemical (valence) force between the obtained
new substance and AS decreases and the new substance (reaction product) is desorbed from
the solid surface. As a result the convection-diffusion models of the heterogeneous catalytic
processes are possible to be created in the cases of physical adsorption mechanism (2.2.6)
and chemical adsorption mechanism (2.2.18).

3.1 Physical adsorption mechanism

Let us consider a heterogeneous chemical reaction between two reagents (AC) in gas-solid
system, where the first reagent is adsorbed physically on the free active sites (AS) of the
solid catalytic surface. The reagents concentrations in the gas phase elementary volume are

Cs G [kg-mol.m 3], while in the void elementary volume of the solid phase (catalyst) the
concentrations are %2 Cs. The concentration of the free AS in the solid (catalytic) phase
elementary volume is % [kg-eq.m °]. The maximal concentrations of AC and AS are



0 0 0 0 0 . . -
Cur € G where ©u . are input AC concentrations in the gas phase. The volume

concentration of the adsorbed AC in the solid phase elementary volume is Ca2 = Ca,
According the physical adsorption mechanism the gas-solid interphase, the mass transfer

rate of the first reagent is km(cn—cls), while that of the physical adsorption rate in the solid

C33 0 C33
. bklclSC_o_kZCBB[ _C_o) L.
phase is % %/, The gas-solid interphase mass transfer rate of the second

reagent is *2(2=%) while the catalytic reaction rate is Ke»(%—¢s). The difference

between the interphase mass transfer coefficients Kor: Koz [s1] is a result of the difference
between the diffusivities of the reagents in the gas phase. The concentration of AS
decreases as a result of the physical adsorption and increases as a result of the catalytic
reaction, because the reaction product does not have adsorption properties.

In the cases of a non-stationary catalytic process the mass balance of AC and AS in the gas

and solid phases leads to the convection-diffusion model of a heterogeneous catalytic
chemical reaction in a column apparatus:

oc oc o%c,, lac, 0%
u, S _p [ o, =% 11 7k01(C117013);

ot oz a2 roar or?

o 2 2
Cx Cy -D 0 C21+18021+8 Cy K (C —c )
- 1 =Pal /2 A 2 02 {b21 = Ca3 )
ot o4 0z ror or
OICl?’—k . —c.)—bke,. 22 kel |1-S2 |,
at o0 (€1 —Cis) 1G1s 7o T Kolss 0 |
Css Cas
dc,,

W = koz (C21 —Cy3 ) - kCze (C§3 - Caa);

dc C c
33 33 0 33 0
= _bklcl3 - T kzcsa l_T + kC23 (C33 - Csa):
t Cas Cas

(0.6.1)
where " =1 (") s the velocity distribution in the gas phase, © (%% =1) are the parts of
the gas and solid phases in the column volume.
The initial and boundary conditions of (2.3.1) are:
t=0, ¢, chl' Cxn Ecgl’ C; =0, C3=0, cy EC§3;

r=0 %zﬁz — acu:aczlE

o o “ or o
ac,

z2=0, C115C101’ ufcflzul(r)cfl_Dll( 621] )

z=0

0215(3211 ufcglzul(r)cgl_DZI(%j )
0 Jpmo (0.6.2)

where Y is the inlet velocity of the gas phase.

For a long duration process the concentration of AS is a constant with respect to the time

(as a result of the desorption of the reaction product) and the model (2.3.1) and (2.3.2) is
stationary form:



1 A ~
oz 0z r or  or?

oc o%c,, 1léc, 0%
B =0 Gt T T e

Cas 0 Cy3
k01 (C11 —Cpg ) - bo k1(:13 "0 + kzcss o0
C3s Css

oc d°c, 1léc, 0%
n:Dn{ S+ n]_km(cn_cls);

koz (Czl —Cy ) - kcza (C§3 - 033) =0;

C C

33 0 33 0 N

_bo le].3 o T k2033 ( - o] + kcz3 (Cs3 - Css) =0;
33 33

A

o
ac, _ 0cy _n _ ac, _ oty —_0

=—==0;, r=r, —=—==0;
or or or or

ac

_ _ A0 0,0 _ 0 11
Z—O, ancuv ulcu:ul(r)cu_Du '
0z ),

oc
C, = Cgl, UIOCSI =u, (I’)Cgl - D21( 8221j ' (O 6 3)
z=0

The use of dimensionless (generalized) variables [1] permits to
of the model (2.3.3), where the inlet velocity and concentrations and the column parameters

make a qualitative analysis

(ro") are used as characteristic scales:

_r _Z _Y _Cu
R_r_l Z_Tl U__Ol Cll__ol
0 Uy Cu
Cx Css Cis Cxs
C21=—0, C33=—0, 613:_01 23~ "0 *
c Cs Ciy Cx (064)

21

If (2.3.4) is put in (2.3.3) the model in generalized variables takes the form:

oC o°C 106C, o°C .
V(R :Fo“[g Z Raw " aRglJ_KM(C“_C“)’
oC o’C 16C, o°C .
VRIF F 21(6 Z RR aRgl]_K”(C“_C”)’
R=0, aC”EO; R=1 &EO;
R R (0.6.5)
Z=0, C,=1 1=U(R)-Pe; oy =12
oz ),_,
C.= Cu+K (1_C33) _ Cu C. = Ks +Cy
13— ’ 23 — PN 33 = .
1+ K,C,, 1+ K, (1—C33) K,C;+K,+C,, (0.6.6)
In (2.3.5), (2.3.6) the following parameters are used:
Kyl Dl ul Iy “1pa-1
Ki=—¢, FOL=—F5, Pey=— 1=12, e=—-=Fo0,Pey,
Th u, Iy D, |
Klzﬁi’ K2:b0k1’ K3:k23033’ Ki= bOK%) Lgl* 5= kzo :
Koy €y Koy Koo KzsCor Cas KzsCot (067)

For high columns the parameter ¢ is very small (0=<10") and the problem (2.3.5) is
possible to be solved in zero approximation with respect to ¢:



U(R)

ac 10C, &°C
5211 = [E 6|'-\il " 8R211]_K01 (Cll_cﬁ);
ac 14C, o°C
iz zl[ﬁ R aRflj‘Koz(cﬂ—Czs%

rR=0, Lu_g r-1 Lo_g z-0 c,=1 i-12
R R

U(R)

(0.6.8)

For big values of the average velocities 0= F0u <107,0=F0,, <10 anq from (2.3.8) follows
the convective type of model

dC
U(R)d_zll:_Km(Cn_Cn);

dC,, . o
U(R)_z_Koz(Cm_Cza)a Z=0, Cy,=1 i=12

0z (0.6.9)
For small values of the average velocities ©=Ko <107°.i=12  fom (2.3.5) follows the
diffusion type of model:
o°C, 14C, &C,

+— + —(C,—-Cy);
dZ®* R R oR? (Ca=Ca)
0°C,, 14C, &°C,

+ + —(C,-C,);
dZ* R R  0R? )

0=K, Fo, [5

0=Kg, Fo,, («9

(0.6.10)
R=0, %EO; R=1, 6C—i050;
OR oR
Z2=0, C,=1 1EU(R)—Pei‘01 % oi=12.
oz ),

The solution of the model equations (2.3.6), (2.3.8) requires a velocity distribution in the
column. As an example the case of parabolic velocity distribution (Poiseuille flow) in the
gas phase will be presented [11]:

2
u, =Ul[2—2:—2], U(R)=2-2R%.
0

(0.6.11)
The solution of (2.3.8) depends on the two functions:
Cu + K1 (1_ Css) C21

LKCy T PTIK(C) (0612)

where C= is the solution of the cubic equation:
@, (Cy )3 +@,(Cyy )2 +@,Cyy + @, =0,
a, = K, (KK, —K,Ky),
o, = Ky (K, +2K,K, =K, )= K, (K, + 2K,K, + K,C,, ) + K,C,,,
@, =K, (Cy + K )(1+ K, )+ Ky (142K, - K, - K,K; ) +(1-K,)Cy;,

@y ==Cp —KiKs =K. (0.6.13)

As a solution of (2.3.13) 9=Cs =1 s to be used.
A solution of the problem (2.3.8), (2.3.12), (2.3.13) has been obtained for the case
K, =1 Fo,=01,i=12 K, =25 K,=1 K,=1 K, =05, K, =1 (0.6.14)

as five-matrix forms:



=||C11(p:)||' Czl(R'Z)zuczup;)"' CB(R,Z):”CBM)",
= ||C23(p¢)||’ Cas (R' Z) - "033@4)”;

-1

, p:1,2,...,p°; Z= , §:1,2,...,§’°, p°=§°.
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Fig. 3.5 Radial distribution of the concentration Cu(RZ)-
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The concentration distributions for different Z are presented on Figs. 3.5-3.9.

3.2 Chemical adsorption mechanism

The difference between the physical and chemical adsorption mechanisms (in the stationary

Css 0 Css
—bk;C s 5~ +K,Co | 1——5~

0

case) is that in (2.3.3) the physical adsorption rate Cas 033] has to be replaced
by the chemical adsorption rate ~*:%:Cx . As a result:

1. The gas-solid interphase mass transfer rate of the first reagent Ko (€ =Csa) is equal to the

chemical reaction between this reagent and AS in the solid phase (catalyst) capillaries
k13c13033_

2. The gas-solid interphase mass transfer rate of the second reagent koo (G =Cs) is equal to
the chemical reaction between this reagent and adsorbed reagent in the solid phase

(catalyst) kCzs (Cgs - Cas) .
3. The adsorption rate of the first reagent KisCiCos must be equal to the desorption rate of
0
the catalytic reaction product, i.e. to the catalytic reaction rate kcza(C“_C“).
In these conditions the convection-diffusion model of a stationary heterogeneous catalytic

chemical reaction in a column apparatuses between two AC in the cases of chemical
adsorption of one AC has the form:



Yoz
oc oc ac oc
r=0, 11 _ 2150; r=r, 1 _ 2150;
or or or or
oc
_ _ 0 0.0 _ 0 11
Z_Or Cy =Gy, u1C11=u1(r)C11_D11
0z z=0

_ A0 0.0 _ 0 5021
C21=CZI’ u1021=u1(r)C21_D21[ P j .
z z=0

(0.6.16)
k01 (Cn - C13) = k13C13C33; koz (CZl - Czs) = kC23 (C§3 —Cy3 );

Ki3CiaCay = KCyp (C§3 - C33)' (0617)
The introduction of the dimensionless variables (2.3.4) in (2.3.16), (2.3.17) leads to:

2 2
U(R)aaczll :FOM[ a C11 +16C11 +a CllJ_Km(Cll_Cls);

&
oz "R R R
Co _ g ( 9°C,  13C,  0°Cy
21

U(R
R} 22 "R R TR

R =0, %EO; R=1, 6Ci1§
OR

j_ Koz (C21 _Czs);

0;

Z=0, C,=1 1EU(R)—Peif(aC”j ;=12
Z Z=0

(0.6.18)
C C C
Co=r Cpu=r— 28—, C33:#'
11 KC, 1+K, (1-Cyy) Cat K  (0.6.19)
where

K — klscgs K :k23_0303 K. = k13_clol
1 ' 2 ' 8 '

Kos Koo ksCs  (0.6.20)

The models (2.3.5) and (2.3.18) are equivalent and the theoretical analysis of the physical
adsorption mechanism of the catalytic reactions in column chemical reactors (2.3.8), (2.3.9)
, (2.3.10) is vald in the chemical adsorption case. The difference is in the expressions
(2.3.6), (2.3.19) of the volume concentrations in the solid phase (catalyst), only.

The solution of the model equations (2.3.18), (2.3.19) needs a velocity distribution in the
column. The case of parabolic velocity distribution (2.3.11) will be presented [11] as an
example.

The solution of (2.3.18) depends on the two functions (Cls' C23) in (2.3.19), where Cs is the
solution of the quadratic equation

(C21K1 _C11K2K3)(C33 )2 +(C21 + C11K3 + CuKz Ks _CZlKl)CSS _C21 =0. (0'6.21)

As a solution of (2.3.21) 9=Cx= =1 s to be used.

A solution of the problem (2.3.18), (2.3.19), (2.3.21) is obtained for the case
Ky =1 Fo,=01 £=0, i=12 K, =1 K,=05 K,=1 (0.6.22)

as five-matrix forms (2.3.15). The concentration distributions for different Z are presented
in Figs. 3.10-3.14.



The presented new approach for modeling of two-phase processes in column apparatuses is
a basis for qualitative analysis of particular processes and for the creation of the average
concentration models and quantitative analysis of the processes.

Catalytic processes modeling

3.1 Physical adsorption mechanism

The convection-diffusion model of the catalytic processes in the column apparatuses [8] in
the cases of physical adsorption mechanism has the form (3.3.3):

ac o%c, léc, o%c
u 11:D11[ll+11+ 11]"‘01(011_013);

Loz 072 r or  or?

oc o%c,, 1léc, 0%
uaD[Grar arf}_km(cfc”);

c
Kot (Ciy —Cig) — bkcISCO +k CSS( Cfszo;

33 33

koz (C21 —Cy ) - kczs (Cgs - Css) =0;

C C
33 0 33 0 N
_bo k1C13 CT + kzcss [ - COJ + kc23 (Css - C33) - 0,
33

33

oc oc ac oc
r:O, A:JEO; r:rO’ A:ig :

or or or or

oc

_ _ A0 0.0 _ 0 11
Z—O, Cy =Gy, U1C11=u1(r)C11_D11 ’
62 z=0

oc
Cy = Cgl’ ulocgl =y (r)cgl -D, (azﬂj :
0.7.1)

From (11.3) follow the average values of the velocity and the concentration functions in
(6.3.1) at the column cross-sectional area:

20 _ 25
ulzr—Z_[rul(r)dr, cll(z):—zj'rcn(r,z)dr,
0 0 0

o

- 2"
021(2):r—zj‘r021(r,z)d I cs(r,z)

0 0 0
623(2):r—20r023(r,z)dr, Ty (2 :—J.rc33 (r,z)dr.

00 (0.7.2)

The functions in (6 3.1) can be presented by the average functions (6.3.2):
u (r)=aa(r), c,(r.z)=c,(z)¢,(r z),
C,y (r,2)=Cy (2)€,(r.2), Cyu(r,z)=Cy(2)E4(r,2),

€ (r2)=Ca(2)6a(r2), Ca(r2)=Sa(2)6a(r2)  (97.3)

where
| ra,(r)dr =1, %J'réu(r,z)drzl, iz.[réﬂ(r,z)drzl,
0 0 rO 0 rO 0
o . 2 A . 2 f )
7| 16 (r,z)dr =1 —ZIrczg(r.Z)dr=1 —zfrcsg(r z)dr=1
" oo oo (0.7.4)



The use of (6.3.2), (6.3.3), (6.3.4) and the averaging procedure (6.0.1)—(6.0.5) leads to the
average concentration model of the catalytic processes in the column apparatuses in the
cases of physical adsorption mechanism:

_dgc, deo __ d’c _
U, . U ugc, = D11 2 k01 (cn _CIS);
dz dz dz’
_dc,, da, _ d’c,, _
a,u, dz + dz u1021 = D21 de - koz (C21 _Czs)!

o (G~ G )— 0K G 2+ [ 0}:0;

33

O

= = =~ A0 = = .
koz (021 - Cza ) - kCZ3C33 + 7kC23033 = 07

c,
— bk c1 =2 1 k,C5, [ 38 J +KCpCS, — 7KC,iCyy = 0;
C33 C33

_ dc, _ dc,
o s () 0 e () 0
z=0 7=0

where
2%
al—al(z)zﬁj'rul(r)cn(r,z)dr,
00

fo

p=(2)= 2 [res(r2)es(r2)ar,

00

2% -
7:;/(2):r—z_[rcz3(r,z)c33(r,z)dr.

00

The use of the generalized variables
7_Z C, = [ C21 = % & _Ca 633__33

T 0 21 = 13 = 0 - -

| Cu C21 Cy, Cx Ca3
< G é _ Cx < Cis < _ Cx C. =
11~ 0 ! 21~ "0 13~ 0 ! 23~ J 33 — |

¢ Ca Cas (0.7.7)
leads to:
dC, d L d*C, -
Aid_zll d'g Cll_ el 72 _K01(C11_C13);
dC,, LA s
C, =P
A 4z @ dz e dz’®

_ dC. _ dC.
z=0, C,=1 (d—zﬂj =0, C,=1 =

c _C_:11+K1(1—633) =~ 621
13 ~ ' 23 — ’
1+BK,C,, 1+K,(1-GCy)
~ K +C,,

33

BK,C,, +K, +GC,, (0.7.9)
The parameters in (6.3.8), (6.3.9) and the new functions have the forms:



0 0
Ky =l pg Ul g k=Kol
Uy i0 o1 S
KZ:bokl Ka_kzacgs _ bOkl LfI _ kz
’ ' 4 ) 5 .
k01 koz k23cgl 023 k23cgl (0710)
1 C. (R,Z)
A(Z)=¢ V4 =¢,(z)=2|RU(R = drR, i=12
(2)=04(12) =, (2) =2 RU (R) L
1 C (R,Z)C (R,Z)
B(Z)=p(12)= B(z)=2|R= = dR,
(@)=02)=pE) 2R )

d C(0.7.11)
1 1
Cia(Z)=2[RC(RZ)dR, Cyy(Z)=2[RCy (R, Z)dR,
0 0
1
Cys(2)=2[RCy(R,Z)dR
0
The use of (5.3.11) and Cu(R.Z),Ca(R2).Cys(R.Z). Cx(R.Z). C (R Z) as a solution of the
problem (3.3.8, 3.3.12, 3.3.13) for the case (3.3.14) permits to obtain the average
concentrations C.i(2).Ca(2).Cs(2).Ca(2).Cx(2) and the functions

A(2),1=12,8(2).6(z ) They are presented on Figs. 6.17 and 6.18, where it is seen that the
i=

functions A(2)1=12,8(2).G(2) can be presented as linear approximations:
A(Z):am"raﬁz, i=l,2, B(Z):b0i+b1iz’ G(Z)ng+g1iz. (0.7.12)
The approximations (“theoretical”) parameters values are presented in Table 6.3, where it is

seen that B=LCG =1 practically.
Table 6.3 Parameters values Ay A, B G
For high columns (0=¢<107 a1 = a2 = bo = g =
0=Pe*=¢Fo, <107, Fo, <1,i=1 2) 1.0090 1.0063 1.0000 1.0000
ain = a;p = by = g1 =
?grdm.the problem (5.3.8) takes the 0.0257  0.0183  —0.0003  —0.0002
dC, dA - N
dz dz 1= 01<C11_C13)’
dC, dA < N -
A, dzﬂ - C,=-Kp(Cy-Cys)i Z=0, C,=1 C,=1. 0.7.13)
The solution of (5.3.13) depends on the two functions:
~ Cu+K(1-Cy) C,,
13 = oY T c )’
L+BK,Cy, LK (1-6C)  (9.7.1)

Where Ca is the solution of the cubic equation:
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Fig. 6.17 Average functions C(Z)
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Fig. 6.18 Functions A(Z) 1=12, B(Z). 6(Z)



— \3 — \2 —
w3(C33) + w, (033) +w,C, + @, =0,

W, = BGK3(K1K4 - KZKS),

w, = KS(BK2 +2BK,K, —GK3)—

-K, (BK1 +BK,K; + BGK K, + BGK3C11)+ BGK,C,,,

@, =BK, (C + K )(1+K;)+

+K, (1+ K; +GK, -BK, - BK2K3)+(G - BKZ)CZI,

[ =—C21—K3K5—K5. (0715)

For solving (6.3.15) ©<Cs <1 has to be used.
The solution of (6.3.13)—(6.3.15) is obtained [8] as five vector forms:

Cu(2)=[us|. Ca(2)=[Cs| Cu(2)=[Cuc|
- - - - -1
CB(Z):‘CB(:)’ Csa(z):‘casm" Z= é;_lv ¢=12,...¢"

d (0.7.16)
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Fig. 6.19 Functions ©:(2).Ca(2): dotted lines - solution of (6.3.13)-(6.3.15) using Table.
6.3; lines - solution of (3.3.8), (3.3.12), (3.3.13) using (6.3.11)

For the case (3.3.14) Fig. 6.19 provides comparison of the functions Cn(z)'czl(z)obtained
as solutions of (6.3.13)—(6.3.15) using Table 6.3 (the dotted lines) with the solution of
(3.3.8), (3.3.12), (3.3.13), using_ (6.3.1_1) (the lines).
The obtained concentrations Cu(2).Ca(2) for the case (3.3.14) after solution of (3.3.8,
3.3.12, 3.3.13) using (6.3.11) allows to obtain “artificial experimental data” for different
values of Z:

Clle (Z,)=(0.95+0.15,)C,, (Z,).

Chioe (Z,)=(0.95+0.1S)C,,(Z,).

m=1..10, Z =01n, n=12,..,10, (0_7_17)



where 0=Sn <L m=1...10 are obtained by means of a generator of random numbers. The

obtained “artificial experimental data” (6.3.17) are used for illustration of the parameter
identification in the average concentrations model (6.3.13)—(6.3.15) by minimization of the

least-squares functions Q and Q:
10 _
Q. (2,580 a5.a3) = Y[ C (2,20, @ a3, a5 ) ~Clly (2,) ] +

m=1

10 _
+Z;l|:C21(Zn'agliaflla(r)]Z’a;Z)_Cquxp (Zn ):|2 ' Zn = O'ln' n =l'2""’10;

10
Q(agllafuagz'afz):nz:;Qn (vaaglvafllagz’afz)l (0718)
where the values of Cu(Zn®1a30a%) g CalZuanalhaeah) are optained as solutions
of (5.3.13-5.3.15) for different values of z: %, =0-In. n=12....10,

. . 0 0 0 0 1 1
The  obtained  (“experimental”  parameter  values — of %o % 3 )y Ay
% &0 81 818 &> gre presented in Table 6.4. They are used for calculation of the
functions C“(Z’a(’l’a“’a”’a“), C21(Z’a°1’a“’a°2’a12), =012 jn the case (3.3.14) as solutions

of (6.3.13)—(6.3.15) (the lines in Fig. 6.20), where the points are the “artificial experimental
data” (6.3.17) (average values for every Z).

The comparison of the functions (lines) with the “artificial experimental data” (points) in
Figs. 6.20 and 6.21 shows that the experimental data obtained from a column with real
radius and small height (Z =0.1) are useful for parameters identifications.

1
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Z
Fig. 6.20 Concentration distributions Ca(Zahapag ap). n=012:
lines - solutions of (6.3.13)-(6.3.15) in the case (3.3.14);

points - the “artificial experimental data” (6.3.17) (average values for every Z).
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Fig. 5.21 Concentration distributions Ca(Z 258 a5, ), n=01.2:
lines - solutions of (6.3.13)-(6.3.15) in the case (3.3.14);
points - the “artificial experimental data” (6.3.17) (average values for every Z).
Table ] ] 1] H 77 1] H 1]
6.4 “Theoretical “Experimental” \,Eflﬁg”m?mab vgl)ljzi“m?malQ
Param values” values - Q min. min ! min 2
eters a,, =1.0090 al, =1.0000 al, =0.9984 a? =0.9988
\éaéues a,, =0.0257 a® =0.0397 al, =0.1032 a2 =0.0779
Chemi a,, =1.0063 a2, =1.0000 a;, = 0.8865 a2, = 0.9206
cal a,, =0.0183 a;, =0.0316 a;, =0.0688 a}, =0.0499
adsor

ption mechanism

The convection-diffusion model of the heterogeneous catalytic chemical reaction, in the
case of chemical adsorption mechanism [8], has the form (3.3.11), (3.3.12), where the
average values of the wvelocity and concentration functions at the column cross-sectional
area have the forms (6.3.2)-(6.3.4). The use of (3.3.11), (3.3.12) and the averaging
procedure (6.0.1)—(6.0.5) leads to the awverage concentration model of the catalytic
processes in the column apparatuses in the cases of chemical adsorption mechanism:

dcg, de d=g,
o, —2L + L0, =D, —2 —k, (T, G );
171 dZ dZ 1~11 11 dzz Ol( 11 13)
_dc, da, __ d’c,

a,u, dz + ?ulcﬂ = D21 d7 - koz (621 - E23 );
z2=0, 611:(:101’ (dcnj =0, 621:(:31’ [dcnj =y
U2 Juo 2 Jo (0.7.19)
k01 (611 _613 ) - ﬁk13613633 = 0! koz (621 _623 ) - k23623 (C§3 - 7/633) = 0,
—BKi5C13Cs + KysCis (03?3 —7Cy) =0. (0720)
The new functions in (6.3.19), (6.3.20) are




o =q (z)=£jrﬂl(r)q1(r,z)dr, i=12,

00
2% <
B =B(2) = e (r,2)e (r, )
00
2% <
7:7(2):r_zjrczs(r’z)css(r’z)dr'
00 (0.7.21)
The use of the generalized variables
z - T = ©C = T = T = T
Z=-, C, =2, C,="2, C,="%8, C,="28, C, =2
| 11 C101 21 031 13 Clo1 23 Cgl 33 ng
o 611 o 621 o 613 o ~23 < ~33
:—, :—’ :—’ C :—’ C :—’
11 Clo1 21 Cgl 13 Clo1 23 Cgl 33 ng (0722)
leads to:
dC, dA = , d?C, _
dC,, dA, - L, d?C, =~ =
A, d221 +%C21 = Pezi deZl - Ky (C21 _C23)
Z2=0, C,=1 (%) =0, C,=1 [%) =0.
(0.7.23)
~ Cll ~ CZl ~ CZS

C13:—_, C23:—_, C33 -,
1+BKCy 1+K, (1_GC33) GCy + BK,Cy (O 7 24)

where Ko Koo Ky A 1=12, B, G gre presented in (3.3.20), (6.3.11).

The use of (6.3.11) andCu(R’Z)'CZI(R'Z)'Cls(R’Z)’023(R’Z)’C33(R'Z)' as a solution of
(1_3.3.18, 3.3.19, 3.3.21)_for the case (3.3.22), permits to obtain the average concentrations

Cu(Z). C4(Z). Cu(Z). Cu(2). Cu(Z) znd the functions A(Z) i=12 B(Z). G(2). They
are presented on Figs. 6.22 and 6.23, where it is seen that the functions

A(z). i=12 B(2), G(2) are possible to be presented as linear approximations (6.3.12).
The approximation (“theoretical”) values of the parameters are presented in Table 6.5,
B=1 G=]

where it is seen that practically.

Table 6.5 Parameter’s values Ay A, B G

For high columns Ay = agy = by = o =
(0=£<10", 0="Pe*=¢Fo, <10°, Fo, <1, i =112)143 1,0078 1,0001 1,0000
the problem (6.3.23) has the form an = a2 = by = =
(6.3.13). 0,0544 0,0204 —0,0041 —0,0012

The solution of (6.3.13) depends on the two functions (Ca Cor):
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Fig. 6.22 Average functions C(2)
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Fig. 6.23 Functions A(2).1=128(2).6(z)

_ _511+K1(1—633) _ C,,

PTULeBKC, | ® 14K, (1-GCy )| (0.7.25)

where C= is the solution of the quadratic equation
— — — \2
BG(C,K, -C,,K,K;)(Cy ) +

+(GC,, +BC,,K; +BC,,K,K; ~BC,,K,)C;; ~C,, = 0. (0.7.26)



In order to solve (6.3.26) 0= Cs <1 has to be used.
The solution of (6.3.13), (6.3.25), (6.3.26) is obtained [8] as five vector forms (6.3.16). For

the case (3.3.22) Fig. 6.24 compares the functions Cu(2), Cu(2) as solutions of (6.3.13),
(6.3.25), (6.3.26) using Table 6.5 (the dotted lines) with the results of the solution of
(3.3.18), (3.3.19), (3.3.21) using (6.3.11) (the lines).

1
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z

Fig. 6.24 Functions ©:(2):Cx(2): dotted lines - solution of (6.3.13), (6.3.25), (6.3.26) using
Table 6.5; solid lines - solution of (3.3.18), (3.3.19), (3.3.21) using (6.3.11).

The obtained concentrations Cu(2). C4(2) for the case (3.3.22) after solving (3.3.18),
(3.3.19), (3.3.21) using (6.3.11) permits to obtain the “artificial experimental data” (6.3.17)
for different values of Z. The obtained “artificial experimental data” (6.3.17) are used as
illustration of the parameter identification in the average concentrations model (6.3.13),
(6.3.25), (6.3.26) by minimization of the least-squares functions (6.3.18). The values of

SHCALHERCALY and 621(Zn’agl‘alnl’agz'ainz) are obtained for the case (3.3.22) as solutions
of (6.3.13), (6.3.25), (6.3.26) for different Zn=0In n=12...10. The optained
(“experimental”) values of o & o &z Bors &1 Bz B 8010 8 82 &2 gre presented in Table
6.6 They are used for calculation of the functions C_ll(z’agl’ainl’agz’ain?)' 621(Z‘a31’a1nl’a32'a&)’
n=012 jn the case (3.3.22) as solutions of (6.3.13), (6.3.25), (6.3.26) (the lines in Fig.

6.25), where the points are the “artificial experimental data” (6.3.17) (average values for
every value of Z).
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Fig. 6.25 Concentration distributions Ca(z a0 a2 ;). n=01.2:
lines - solutions of (6.3.13), (6.3.25), (6.3.26) in the case (3.3.22);

points - the “artificial experimental data” (6.3.17) (average values for every Z).

The comparison of the functions (lines) and experimental data (points) in Figs. 6.25 and
6.26 shows that the experimental data obtained from a column with a real radius and a
small height (Z =0.1) are useful for the parameter’s identifications.
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Fig. 6.26 Concentration distributions Ca(Z 22 a5, ), n=01.2:

lines - solutions of (6.3.13), (6.3.25), (6.3.26) in the <case (3.3.22);

points - the “artificial experimental data” (6.3.17) (average values for every Z).
“Theoretical” “Experimental” “Experimental” “Experimental”




Tabl values values - Q min values - Q; min values - Q, min

e 6.6 a,, =1.0143 a% =1.0000 al, =0.9946 a2 =0.9978

Para a, =0.0544 2% = 0.0643 al, =0.1007 a2 = 0.0081

[rsleter a,, =1.0078 2, =1.0000 al, = 0.9081 a% =0.9159
=0.0204 0 ~0.0383 L =0.1024 2 _0,0648

value 2o % a, 2%

S

A new approach for the column apparatuses modeling uses convection-diffusion type
models and average-concentration models. All these new types of models [1-3] are
characterized by the presence of small parameters at the highest derivatives. As a result the
model equations have no exact solutions and approximate (asymptotic) solutions have to be
obtained [4-6]. In these cases the use of the conventional software (MATLAB) for solving
the model differential equations is difficult and this difficulty may be eliminated by an
appropriate combination with the perturbations method.

1. Perturbations method

Let ¢ is a small parameter and y=¢(t¢) is the solution of the ordinary differential
equation [4, 5]

y'=F(v.)  (0.7.27)
in the finite interval

t, <t<T, 0<e<g, (0728)

where %0 is a small numeral. The exact solution of Error! Reference source not found. is
possible to be presented (like Taylor series expansion) as a power series expansion with
respect to the small parameter ¢:

olte)=2 0. 1) (0.7.29)

where (1) is the solution of the ordinary differential equation

y'=F(¥.0-  (0.7.30)
The exact solution (7.1.3) is valid [3, 4] in the finite interval (7.1.2), only.
In the case of existence of small parameters at the highest derivate

ay'=f(yz) 2=9(v2)  (07.31)
anew variable ?=Y¢ has to be used:

Y1, dz1dy dz _

Y =40s “Tdes de fly.ze). do 20(y.2.2), (0.7.32)

but these equations set has no exact solution

p(6,¢)= gesqos (0), »(6.¢)= ggs;/s (0),

because

t
—0S9S1—>OO, &>

0,
€ € (0.7.34)
i.e. the interval (7.1.8) is not finite [3, 4].

(0.7.33)



In the case of (7.1.5) an approximate solution Y=7(t¢) pas to be sought if
[o(te)-a(te) <o, (g7 35)
where practically ~10" because the relative error in the experimental measurements are

typically more than 1% (all mathematical operators which represent very small <10
physical effects must be neglected, because they are not possible to be measured
experimentally). This asymptotic solution is possible to be presented (like Taylor series
expansion) as a power series expansion with respect to the small parameter ¢:

ﬂt”:gfﬁﬁls“ﬁ“&@' (0.7.36)

Let us consider the function y=o(te) in the interval 0<t<1 as a solution of the differential
equation
gy": y|+ Y, y(O) =1, y'(O) =0. (0.7.37)

An approximate (asymptotic) solution y=9(t¢) of (7.1.11) is possible to be presented as
o(te)=a () +en () +e°a, (1) (7.39)
The introduction of (7.1.12) in (7.1.11) and grouping of members with the same power of
¢ and their equalization to zero leads to individual differential equations for the functions
in (7.1.12):
P +3,=0, =1
Pt =0 P =0
?,+t0, =0, 9,=0 (0.7.39)
2. Convection-diffusion type models

Let us consider a model of the column apparatuses with pseudo-first-order chemical
reaction (2.1.27), where the fiuid flow is of Poiseuille type:

2 2
(2—2R2)£:F0[56 S CJ—DaC;

oz 02> ROR OR?
r=o, L_0 r=1 L_o
oR R
e

Z=0, C=1 1=U-Pe'—=.
oz (0.8.1)

The convection-diffusion type model (7.2.1) is of elliptical type. In the case of a short

column ¢ is a small parameter and the perturbations method [4-6] can be used, i.e. the

substitution of an elliptical equation by a set of parabolic equations. A computer realization

of this method will be presented as an example of the chemical reactor column modeling [2,

7].

2.1. Short columns model

For short columns ¢ is a small parameter and if ¢ <0.3 the problem (7.2.1) is possible to be

solved using the following approximation of the perturbation method [6]

C(R,Z)=CY(R,Z)+eC" (R, Z)+&’C”(R,Z)+°C¥ (R, Z) (0.8.2)

© c0 .
where €”.C"” and C" are solutions of the next problems:



(0) (0) 2¢~(0)
(2—2R2)6C =Fo(lac +&J—Dac(°);

oz R &R OR?
(0) (0)
R=0, oc =0, R=1 oc =0 Zz=0, C9=1
&R R (0.8.3)
s) ) A2n() 2(s1)
(2—2R2)£:F0 Loc +aC2 ~DaC" +Fo Cz ;
R R R Z
OC(S) ac(s)
R=0, ——=0; R=1, =0, z=0, Cc9=0, s=1..,3.
R R (0.8.4)

In (7.2.2) the individual effects (mathematical operators) and their relative role (influence)
-2 4 -2

in the overall process (model) must be greater than 10° (s* <10%), because the accuracy of

the experimental measurements is greater than 1%.

2.2. Calculation problem

The numerical solution of the equations set (7.2.3), (7.2.4) is possible if MATLAB and a

. (s) . . .
four-step procedure are used, the functions © (RZ). s=0123 being obtained in four
matrix forms:

CY(RZ)=[a%], s=0L23 p=12,..,0° ¢=12..¢°,

S
ap¢

0<R<l 0<z<1, R=2L z_671  o_p
p -1 ¢ -1 (0.8.5)
The first step is the solution of (7.2.3), i.e. element calculations of the matrix:
CORZ)=[a% ] p=12..p° ¢=12..¢"

P
p-1 Z:é/_l 0 C;O

0<R<1 0<Z<1 R=

' , P .
P’ -1 ¢*-1 (0.8.6)
. . . . ] C(O)(R,Z):
The next step is a polynomial approximation of the function
CO(R.Z) =[S | =as, | +|es,|Z +|as, |22 +]es, | 2° +]et, | 2*,
p=12..0", 0<R<1 R= p0—1
p -1 (0.8.7)
and the determination of the second derivative
*c” 0 0 0 |52
“az? :"gp; =2|a2p|+6|a3p|2+12|a4p|2 '

p=12,..,p° 0<R<I, R:”o—_l.
p -1 (0.8.8)
The next step is the solution of (7.2.4) for s=1 using (7.2.8), i.e. elements calculations of
the matrix:
CY(RZ)=|a[ p=12..p° ¢=12..¢"°
p-1 ¢-1 0 0
EEUE e (0.8.9)

Then follows the polynomial approximation of the function

0<R<1l 0<Z<1 R=

c"(R,z)



CY(R,z)=|a’,

1
Z +|a2p

Y [ & 1 2 1 3 1 4
—|aop|+|alp Z +|a3p|Z +|a4p|Z ,

p=12,..0° 0<R<1 R=L71

p’-1 (0.8.10)
and the determination of the second derivative
820(1)
— =9 =2lez [ +6les, |2 +12]er, | 27,
p=12,..p°% 0<R<1 R=L71

p-1 (0.8.11)
The next step is the solution of (7.2.4) for s=2 using (7.2.8), i.e. elements calculations of
the matrix:

CORZ)=|a%| » p=12..p" ¢=12..¢°
0<R<l 0<z<1 R=AL z-¢71 o_r
p -1 ¢ -1 (0.8.12)
. . I . C¥(R,Z).

The next step is the polynomial approximation of the function :

C(R.Z) =, | =[ad, | +]ac, | 2 +|o, | 27 +]ac, |2 + e, 2

p=12..p0", 0<R<1 R= ”0_1

p-1 (0.8.13)

and the determination of the second derivative

o*c?

?=||gi§"=2|a22p|+6|a§p|z +12|a}, |27,

p=12,..0° 0<R<1 R=L71

P’ -1 (0.8.14)
The last step is the solution of (7.2.4) for =3 using (6.2.14).
The solution of the problem (7.2.3), (7.2.4) was obtained using MATLAB program. It
solves the equations (7.2.3) and (7.2.4) using the built-in MATLAB function pdepe, which
solves initial-boundary value problems for parabolic partial differential equations. The

o2cl
second derivatives 9Z° S70L2 are obtained with a polynomial approximation using the
functions polyfit and polyder of MATLAB, and then are introduced in the partial
differential equations (7.2.3) and (7.2.4) using the built-in MATLAB function interp2.
2.3. Concentration distributions

The solutions of the problem (7.2.1) obtained for the cases

concentration distributions ©(R2) in (7.2.2) for Pe” =¢F0=005015 504 7 = 02, 0.5, 0.8,
1.0 are presented in Figs. 7.1 and 7.2.
3. Average-concentration models
In the cases where the wvelocity distribution in the column is unknown an average-
concentration model (5.1.7) is possible to be used for the chemical reaction modeling:
— . _
A(z)d—c+d—A6= pe-+ CZ paC; z-0, C=1, Loy
dz dz dz dz (0.9.1)

Fo=05, Da=1 ¢=0.1,0.3 and

where
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Fig. 7.3 Average concentration c(z) (7.3.2): 1- =01 2-£=03,
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Fig. 7.4 Function A(?) (7.3.2): 1-#=01, 2-2=03,
The solution of (2.1.27) and (7.3.2) in the case F0=05 Da=1 Pe’=zFo, £=0.1,03 normj
C(2),A(z)

to obtain the functions : they are presented on Figs. 7.3 and 7.4,

It is seen from Fig 7.4 that the function AZ) can be presented [2] as a linear approximation

A=a+aZ anq the (theoretical) values of the parameters 2@ are presented in Table 7.1.
As a result the model (7.3.1) has the form:



Z=0, C(0)=1, (3—;:} =0
2-0 (0.9.3)
e 8 3 % & % a 3 3
0. 1,01 0,00 1.05 0.08 0.95 0.000 0.93 0.00
1 26 75 89 63 79 3 30 05
0. 0,99 0,02 1.07 0.16 1.20 —0.00 0.92 0.00
3 37 88 43 63 18 10 99 05
Table 7.1 Model

parameters values
In (7.3.3) for F0=05 Da=1 £=03 tne ggll parameter is Pe'=sFo= 0=015 6° <107,
L.e. the perturbation method is possible to be used:
C(z)=C"“(z)+6C"(z)+6C?(z) (0.9.4)
and from (7.3.3) and (7.3.4) follows:
o)

dC ~(0) ~(0). ~(0)
a,+a,7Z +a,C% =-paC"; z=0, C”=1.
( iz (0.9.5)

~(s) _ 2~(s-1) _ _
(a0+alz)dgz +aic(5):d§z2 ~-DaC"; z=0, CY(0)=0, s=12.

(0.9.6)
3.1. Calculation problem
The numerical solution of the equations set (7.3.5), (7.3.6) is possible if MATLAB and a

. c(s) - . . .
three-step procedure are used, where the functions C¥(z), s=012 will be obtained in

four vectors forms:

CY(z)=la;|, s=012,
0<Z<1, z:i_l, C=12...,"
¢ -1 (0.9.7)
The main problem in solving the equations set (7.3.5), (7.3.6) is the calculation of the
2306
ac (z),s=012

second derivatives  9Z° A circumvention of this problem may be the

application of one of following two algorithms.
Algorithm 1
The equations set (7.3.5), (7.3.6) permits to obtain the expression for the derivatives (

qDE6D dkDEe)
dkC_(s)_ dz —(Da+kb1) dz® D s—01. .4
de (b0+blz) 1 gy ey Thy
_ oct)  _
k=1..(4-s), C¥=0 d CO =C"
dz (0.9.8)

The first step is the solution of (7.3.5)

CY%z)=[a", o<z<1 z= 50_1, £=12,..¢,°
@)-[#] -1 (0.9.9)




applying (7.3. 8) (5:0 k=1 2) for calculating the elements of the vectors
dc"
dz =[#] dZZ

—00|

0<Z<1 Z= 50 1, ¢=12,.,¢°
¢ -1 (0.9.10)
The next step is the solution of (7.3.6) using (7 3.10) for s=1

CY(z)=at|, o<z<y, z_g_ll, =12

(0.9.11)

and (7.3.8) (3:1' k :1’2) for calculating the elements of the vectors
dCc® d2cw

0<z<1 Z= ‘;0_1, C=12...,°
¢ -1 (0.9.12)
The last step is the solving of (7.3.6) using (7.3.12) for s=2:

5(2)(2): |, 0<zZ<1 Z-= g’o—l, g“:l,2,...,§°.
[ ¢'-1 (0.9.13)

Algorithm 2
The first step is the solution of (7.3.5), i.e. element calculations of the vector:

c9(z)=la|, o<z<1 z-4-1 =12,
@)-e -1 (0.9.14)

(0)
The next step is a polynomial approximation of the function c(z)

cO(
C |a§|—050 v+ +a 2’ +all’ + a2t (0.9.15)
and the determination of the second derivative

— | |—2052 +6a.Z +12a,Z°.
dZ (0.9.16)

The next steps is the solution of (7.3.6) using (7.3.16) for =1, i.e. elements calculations of
the vector:

Y(z)=[aY, o0<z<1 z= ¢ -1 £=12,..0°
= ¢°-1 (0.9.17)

The next steps is the polynomial approximation of the function
5(1) |a¢|—ao+a12 +a,2° + a2’ +a, 2t (0.9.18)

CY(2):

and the determlnatlon of the second derivative
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Fig. 7.5 Awerage concentrations for ¢=005: solid line - calculated by (7.3.2),
dotted line - solution of (7.3.3) (algorithm 1), dashed line - solution of (7.3.3) (algorithm 2).
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Fig. 7.6 Awerage concentrations for ¢=015: solid line - calculated by (7.3.2),

dotted line - solution of (7.3.3) (algorithm 1), dashed line - solution of (7.3.3) (algorithm 2).
d:c®
dz* (0.9.19)

The last step is the solution of (7.3.6) using (7.3.19) for s=2.

The solution of the problem (7.3.3) was obtained using MATLAB program. It solves the

equations (7.3.5) and (7.3.6) applying its the built-in MATLAB function ode45, which

solves non-stiff differential equations. Two different algorithms are used to obtain the

(2)=|gt| = 2a; + 6232 +122,2°.



second derivatives, which are introduced in the differential equations (7.3.5) and (7.3.6), by
using the built-in MATLAB function interpl.
3.2. Average concentration distributions

The solutions of (7.3.3) for theoretical values of %% (see Table 7.1) and
0=0.05 015 Da=1" qgptained applying the algorithms 1 and 2: they are presented (dotted
lines) on Figs. 7.5 and 7.6, where they are juxtaposed with the calculated average
concentrations (7.3.2) (lines).
3.3 Parameter identification

The concentration C(RZ) in (72.1) obtained for the cases T°=05 Da=1

£=0103 Pe’ =sF0=005015 glowns to obtained the average concentrations ©(%) in
(7.3.2) and “artificial experimental data” for different values of Z:
Co(Z,)=(0.95+0.15,)C(Z,), m=1..10,

exp

Z,=01n, n=12,.,10, (0.9.20)

where 05Sn<1m=1..10 516 obtained by a generator of random numbers. The obtained
“artificial experimental data” (7.3.20) are wused for illustration of the parameter
identification in the average-concentrations model (7.3.3) by minimization of the least-

squares functions Qv "=12 ang Q:
Qu(Z,.b.67)=>[C(2,.b5.b7)~C2, (2.)]

m=1

Q(bg,b) = 3 Q,(Z,,b,p), Z,=01n, n=12,..,10,
( ) zf ( ) (0.9.21)
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Fig. 7.7 Comparison of the concentration distributions (7.3.3) and “artificial experimental
data” (7.3.20) for ©=005: dashed line — C(Z%2): dotted line —C(Z%): solid line —

E(Z'ag'af); circles — “artificial experimental data” (7.3.20).
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Fig. 7.8 Comparison of the concentration distributions (7.3.3) and “artificial experimental
data” (7.3.20) for ©=015; dashed line —C(Z%2); dotted line — (2% &): solid line —
E(Z'ag'af); circles — “artificial experimental data” (7.3.20).

where the values of C(z,.b.00) are obtained as solutions of (7.3.3) for different
Z,=01n, n=12..10 Tpe obtained values (%373 38.8) 4 presented in Table 7.1.

They are used for calculation of the functions C(Z’ag’af)‘ C(Z’aé’ail)' C<Z‘a§‘a12) as
solutions of (7.3.3) (the lines in Fig. 7.7), where the points are the “artificial experimental
data” (7.3.20).

The comparison of the functions (lines) and experimental data (points) in Figs. 6.7 and 7.8
shows that the experimental data obtained from a column with real radius and small height
(£=0.1) are useful for parameters identifications.

The computer modeling of the mass transfer processes in column apparatuses on the base of
a new approach using a convection—diffusion type model and an average-concentration
type model leads to calculation problems in the cases of presence of small parameters in the
highest derivatives. This problem is solved by means of MATLAB and three algorithms
applying the perturbations method.



