Tema 3.10.7. MOJAEJIUPAHE U CUMYJIMUPAHE HA ABCOPBIIMOHHHU U
AJJCOPBIIMOHHU ITPOLIECHU B UHAYCTPUAJIHU AITAPATHU

MODELING AND SIMULATION OF ABSORPTION AND ADSORPTION
PROCESSES IN INDUSTRIAL COLUMN APPARATUSES

JlekTop:
IIpo¢. nTH Xpucro bosiakues
Prof. Dr. Christo Boyadjiev
Tel. 0898 425 862

E-mail: chr.boyadjiev@gmail.com

Xopapuym:

30 yueOHu gaca

AHoTanud:

B KypCa CC IpeajaratT METOAUTC 3a MOACIUPAHC U CHUMYIHWPAHC Ha a6COp6I_II/IOHHI/I n
a,I[C0p6I_II/IOHHI/I IIpOoLECH B KOJIOHHHU IIPOMUIUICHH! aliapaTu, pa3BUTH B MOHOl"pa(l)I/II/ITeZ

Chr. Boyadjiev, “Theoretical Chemical Engineering. Modeling and simulation”, Springer-
Verlag, Berlin Heidelberg, 2010, pp. 594.

Chr. Boyadjiev, M. Doichinova, B. Boyadjiev, P. Popova-Krumova, “Modeling of Column
Apparatus Processes”, Springer-Verlag, Berlin Heidelberg, 2016, pp. 313.

Ile 6paaT pasriegaHu KOHBEKTUBHO-AU(PY3MOHHU U CPEAHO-KOHIEHTPAIMOHHU MOJIENIU B
NPUONIMIKEHUSITA HA MEXaHWKaTa Ha HEMPEKbCHATUTE CPeAM B CIIydawTe Ha (Qu3nyHA U
XUMHUYHA a0COpOLHS B CHCTEMU Ta3-TEYHOCT M (U3NYHA U XUMUYHA aJICOPOIUS B CHCTEMU
ra3 (TE4YHOCT)-TBBPAO. Pasmiexmanute Moaenud JaBaT BB3MOXKHOCT 3a KAauyeCTBEH U
KIMYECTBEH aHAIN3 Ha aOCOPOIIMOHHY U aJICOPOLIMOHHU MTPOIIECH B KOJIOHHU MPOMUIITICHU
anaparu. llle ObmaT pasrienanv W U3YUCIUTETHUTE MPOOIEMH TPH CUMYIUPAHETO Ha
pasriexXJaHuTe MPOIIECH.

Annotation:


mailto:chr.boyadjiev@gmail.com

In the course are presented the methods for modeling and simulation of absorption and
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Will be discussed the convective-diffusion and average-concentration models in
approximations of Mechanics of Continua in cases of physical and chemical absorption in
gas-liquid systems and physical and chemical adsorption in gas (liquid)-solid systems. The
models considered are suitable for qualitative and quantitative analysis of the absorption
and adsorption processes in industrial column apparatuses. Will be discussed the
calculation problems in process simulations.
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IIbnen Tekct

The modeling of two-phase gas-liquid (! =12), gas-solid (J=13) and liquid-solid (J=23)
interphase mass transfer processes in column apparatuses is possible to be used in the case
of absorption, adsorption and heterogeneous (catalytic) chemical reactions. For the
modeling of two-phase processes [1-5] the model equations (1.3—-1.5) have to be used, i.e.

components mass balances (=12--k) in the phases, where according (2.1.10) the radial
velocity components are equal to zero (Vi =% 1=523).
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In 2.0.1) Y=Y (") [ms?] and & =¢,(rz) [kg-mol.m®] are the axial velocity components

and transferred substance concentrations in the phases, D; [m?.s1] are the diffusivities in

0 0
the phases, “i and % are the inlet velocities and the concentrations in the phases. The

concentrations of the transferred substance in the phases are presented as kg-mol of the



transferred substance in 1 m® of the phase volume. The hold-up coefficients (m® of the
phase volume in 1 m® of the column volume) and the inlet velocities in the column are
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obtained from the ratios 1= 71/F and U , Where % is the column radius [m], F

3
. Fo =2 F
are the phase flow rates [m’.s!] in the column, 1=123 and = [P is the total
fow rate of the fluds in the column. The wvolume reactions terms
s _ -3 -1
Q 1=123 [kg mol.m s ] are the rates of the chemical reactions and interphase mass
transfer, as volume sources (Q‘J’ >O) or sinks (Q"’ <0), in the phase parts of the elementary
column volume and participate in the mass balance in the elementary phase volumes.

The model (2.0.1) is possible to be used for co-current two-phase flows (% =% =%) or for

counter-current ones (2*%=! where | is the active zone height [m] of the column). In the
counter-current flows the mass transfer process models has to be presented in a two-
coordinate systems [1] because in a one-coordinate system one of the equations has no
solution due to the negative Laplacian value. The solution method of the equation set in
two-coordinate systems will be presented in Chap. 8.

1. Absorption processes

The convection-diffusion type models of the absorption processes [5, 6] in the gas-liquid

systems is possible to be obtained from (3.0.1) if 1=12 (1=&a+&) =12 The Kinetic

terms Q0 1=12 are the inter-phase mass transfer rates (-1) ko (€ 7€), =12 in the gas
and liquid phases and the chemical reaction rate (‘kclzcm) in the liquid phase, as volume
sources or sinks of the substances in the phase parts of the elementary (column) volume
[kg-mol.m3st], where X [s7'] is the interphase mass transfer coefficient, # - the Henry’s
number, K - the chemical reaction rate constant. The same models is possible to be used for
modeling of the extraction processes if % is the redistribution factor.

The concentration of the transferred substance (i=1) in the gas (liquid) phase is “ (c)

[kg-mol.m™], i.e. kg-mol of the transferred substance in the gas (liquid) phase in 1 m® of the
phase (elementary) volume, while the concentration of the reagent (1=2) in the liquid

phase is % [kg-mol.m™] (in 1 m® of the phase elementary volume).

0
The inlet concentration of the transferred substance in the gas (liquid) phase is “ (C”). In

the cases of absorption (desorptlon) (c“ ) practically. The input velocities '

j
(1=12) [m.s '] of the gas and liquid phases are equal to the average velocities o (1=12)
of the phases in the column, which are defined as

u? =T, 7—‘[ru rydr, j=12,
g;rr

(0.1.1)

where i 1532 are the gas and liquid phase flow rates [m*.s™*] in the column volume.
1.1 Physical absorption
The physical absorption is an interphase mass transfer of one substance from the gas to the

liquid phase. The opposite is desorption. In these cases b =1 and the substance index i is



possible to be ignored, ie., the concentrations will be designated as ©i- 1=132 A5 a result
the convection-diffusion type model for the steady-state physical absorption in the column
apparatuses has the form:
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where Ui [ms?, D [m2s?] and © U=12) are the welocities, the diffusivities and the
hold-up coefficients in the gas and liquid phases. The boundary conditions of (2.1.2) are
different in the cases of co-current and counter-current gas-liquid flows.

Let us consider a counter-current gas-liquid bubble column with an active zone height |,

where &("%) and ©("Z) are the concentrations of the absorbed substance in the gas and

the liquid phase (2*%=1)_ The boundary conditions of (2.1.2) have the form:
r=0 a—clza&EO' r=r %:aﬁzo-
o o o eor

z,=0, c,(r,0)=c], ufcfzul(r)cf—Dl[gclJ ;
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%2 /1m0 (0.1.3)
[
where Ui' 1=12 are the inlet (average) velocities in the gas and the liquid phase. In the case

. °_n- . " — —
of gas absorption € =%is practically valid. In the cases of co-current flows % =2 =2

The presented convection-diffusion type model (2.1.2), (2.1.3) permits a qualitative
analysis of the physical absorption processes [5, 6] to be made using dimensionless
(generalized) variables:
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If (2.1.4) is put into (2.1.2), (2.1.3) the model in generalized variables assumes the form:
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where
D, | 0
Kozk—%', Fo,, =—, Pen:LI, ji=12.
U, UJ Iy Dll (016)
From (2.1.5) it is possible to obtain directly the models of the physical absorption in the
cases of highly (# =0 €2=0) and slightly (# = € =1) soiple gases.



The approximations of the film theory and the boundary layer theory of the mass transfer
are not valid for the interphase mass transfer in the column apparatuses and the expressions
for the distribution of the interphase mass transfer resistance between the gas and liquid

phases (0.4.5, 0.4.12) are not possible to be used.

0=K, :k—OOI£10’2, C, =1

From (2.1.5) it follows that Uy in the cases of a big average gas
velocity U=y , iLe. the solution of the first equation in (2.1.5) is equal to unity. The
concentration gradient in the gas phase is equal to zero as a result of the very big
convective mass transfer rate in the gas phase, i.e. the mass transfer resistance in the gas
phase is very small and the process is limited by the mass transfer in the liquid phase.

0
0=K, £ <10?, C,=0
In the cases Uz , lL.e. the solution of the second equation in (2.1.5) is
equal to zero. The concentration gradient in the liquid phase is equal to zero as a result of

the very big convective mass transfer rate (big average liquid velocity U :“3), i.e. the mass
transfer resistance in the liquid phase is equal to zero and the process is limited by the mass
transfer in the gas phase.

These results show that the convection-diffusion type model permits to be obtained the

dimensionless mass transfer resistances in the gas (1) and liquid (#2) phases:

0
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From (2.1.7) it is possible to obtain directly models of the physical absorption in the cases
of highty (#7202 20.0,20.C,=0) ang gligntly (7% =% £ =0, Ci=1y gopble
gases.

The intensification of the absorption processes is possible to be realized by intensification
of the mass transfer in the limiting phase (practically by increasing of the convective mass
transfer), ie. phase with the higher mass transfer resistance. The increasing of the
convective transfer in the liquid drops and gas bubbles has a limit, ie. the optimal
organization of the absorption process is the absorption in gas-liquid drops systems, when
<10

ptp, =1 p

the resistance is in the gas phase (*- , Po Slo_2), or absorption in liquid-gas bubbles

systems, when the resistance s in the liquid phase (£ <107 £ >10%),
For high columns the parameter ¢ is very small (0=¢<107) and the problem (2.1.5) is
possible to be solved in zero approximation with respect to ¢:
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For big values of the average velocities ©=F0:<107,0=F0, <107 anq from (2.1.5) follows
the convective type model



dc,
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For small values of the average velocities 0=Xo <107, E from (2.1.5)
follows the diffusion type model:
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The solution of the model equations of a counter-current physical absorption in two-
coordinate systems are presented in Chap. 8 and [6].

1.2 Chemical absorption

Two reagents (iO :2) participate in the chemical al_)sorp'gion. The first is in the gas phase (
1=11=1) and the second is in the liquid phase (=2 J=2). The chemical absorption wil

0= K’1 Fo [5

0

Q)"'))

be presented in a co-current column (Z=%=2). Considering that ® (%) is the

concentration of the first reagent in the gas (liquid) phase and ©z is the concentration of the
second reagent in the absorbent, the mass sources (sinks) in the medium elementary volume
(in the physical approximations of the mechanics of continua) are equal to the chemical

reaction rate - K¢z and the inter-phase mass transfer rate - ko(cll_lclz). As a result, the
convection-diffusion model in a column has the form:
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where U("): %(") are the velocity distributions in the gas and liquid phases, % ("?) and

D; (i=12:j=12) are the concentration distributions and the diffusivities of the first reagent

in the gas and liquid phases and of the second reagent in the liquid phase.

Let us consider a co-current liquid—gas bubble column with a radius " and working zone
height |. The boundary conditions of the model equations (2.1.11) have the form:
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are the inlet velocities and concentrations in the gas and liquid

phases. In the cases of gas absorption ¢ =0 g practically valid.

A qualitative analysis of the model is possible to be made using dimensionless
(generalized) variables:

0z

o 0 .
where uj, Cj, =12, j=12

r z U U, Cu CoX Cy
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The model (2.1.11), (2.1.12) in generalized variables (2.1.13) has the form:
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From (2.1.14) follows that the absence of a chemical reaction in liquid phase - k=0 (or

¢ =0y Jeads to P2=0.Cx=1 (or C2=0) and as a result the model of the physical
absorption is obtained (2.1.5). The same result is possible to be obtained in the cases

0
0=Da2% <10?

Cu , Le. the chemical reaction effect is negligible (it is not possible to be
measured experimentally).



In the cases, when the interphase mass transfer is a result of the chemical reaction in the

Da 2% >1 Da 24 >1
liquid phase ( “: ), the second equation in (2.1.14) should be divided by  “u
i.e.
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In the cases of very fast chemical reactions ( ) from (2.1.14) is possible to obtain
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For big values of the average velocities 0=F0s<107.5=123 gom (2.1.14) follows the
convective type model
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The concentration distribution in the chemical absorption case will be obtained for high
columns, where the parameter ¢ in (2.1.14) is very small (0=¢<10"). The velocity
distributions in the phases will be Poiseuille type and the difference between the velocities
of the phases will be in the average velocities only:

U1=U2:2—2R2. (0119)
As aresult, the problem (2.1.14) takes the form:
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The soluion of (2.1.20) is obtained in the case FOu=Fo,=Fo0;=01
Uy . Cpx
K,=Da=1 2£=1 2%£-2
Uz Cu and the results are presented on Figs. 3.1 and 3.2.
In the chemical absorption case the model (2.1.14) permits to obtain (similar to (2.1.17))
the inter-phase mass transfer resistance distribution between the gas and liquid phases:

0.0
ul Cll

= K’ = y = y
P P2 = PoPrr Po Da USCSZ
1 P
ptp, =1 p —

= , p = ,

Lepy 0 Lem (0.1.20)
where the parameters ~ and #2 can be considered as mass transfer resistances in the gas
and liquid phases. Very often the big values of D2 lead to small values of Ao and as a result

PL<P2 je. the gas is the limiting phase and the optimal organization of the absorption
process is the absorption in gas-liquid drops systems.
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Fig. 3.1 Concentration distribution C11(R,2): (1) - Z=0.2; (2) - Z=0.4; (3)-2=08;(4)-Z
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Fig. 3.2 Concentration distribution C22(R,2): (1) - 2=0.2;(2)-2=04;(3)-Z2=0.8; (4) -
Z=1

The theoretical procedure (I11.5-11.15) presented in Part Il will be used for the creation of

average concentration models of absorption, adsorption and catalytic processes in two-
phase systems.

The convection-diffusion model of the two-phase systems [1-3] has the form (3.0.1):
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The average values of the velocities and concentrations at the column cross-sectional area
in two phase systems follow from (11.3):

u; =%Iruj(r)dr, qj(z):%Ircij(r,z)dr,
Iy ) fo 0
i=12,...i, j=12=13=2.3 (0.1.23)

The functions Ui (") % ("2) in (6.0.1) can be presented by the average functions (6.0.2):
uj (r)=u,a;(r), ¢ (r.z)=c(z)¢(r.2).

i=12,..,0, j=12=13=23, (0.1.24)

where 0 (r) and & (r.2) present the radial non-uniformity of the velocity and concentration
and satisfy the conditions

%jlruj(r)drzl, %fréij(r,z)drzl, i=12,...,i, j=12=13=23.
oo fo o (0.1.25)
The average concentration model may be obtained when putting (6.0.3) into (6.0.1),

multiplying by r and integrating over r in the interval [0%] As a result, the average
concentration model has the form:

_ dEIJ daij o dzéij ) fo .
;U az, + az, u;C; =Dy az’ +E£rQijdr,
dc.
z,=0, G =¢ [ ”] =0
dzj
2170
i=12,.., j=12=13=23, (0.1.26)
where

a; (z)=£2 ra(r)g(r,z)dr, i=12,..i, j=1,2=13=23
oo (0.1.27)
1 Absorption processes modeling
1.1 Physical absorption

The convection-diffusion model of the physical absorption (io =1 and the substance index i

is possible to be ignored, j=1’2) in a counter-current column [4, 5] has the form (3.1.2,
3.1.3):



j j j j .
azf +?E+ po }L(—l) ko(c,—x¢,); 1=12

0 0.0 0 8C1 .
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0 Z
2 /1,0 (0.2.1)
(! is the column active zone height in the co-current column % =% =7)
0 e -
and % =9 practically.

The use of the averaging procedure (6.0.1)-(6.0.5) leads to the average concentration model
of the physical absorption:

where 4+Z% =l

dc, de, o dzé i _ _ .
O‘J”i?jﬁLHjjujcj =D, dzf] +(-1) ko (G =2C,); §=12
1 /=0 2/2,=0 (0.2.2)
where
J'ru dr j=12

(0.2.3)

For a theoretlcal analysis of the physical absorption the following dimensionless
(generalized) variables have to be used:

z,=% z,-%2 =% ¢ -%
| | C, C, (0 2. 4)
If (6.1.4) is put into (6.1.2) the model in generalized variables takes the form:
dC, dA _ d’C
A"d_Zjer_ZJjC P_Jl = L-(-1)"" Ky, (G, -C,):
Z,=0, C= [ﬁj =0; Z,=0, C,=0 (dCZJ =0
dz, ), ., dz, ), _, (0.2.5)
where
ul
Pe, 4 Ko, =@ZH, j=12.
D, U (0.2.6)

From (6.0.2), (6.0.3), (6.0.6), (6.1.3) and (6.1.4) follow the expressions:
(rR) _U.(R). &(rz)= j(roR’IZj):Cj(R’Zj)
R T R-TC2 R




As an example will be considered the case of parabolic velocity distribution (Poiseuille
flow), where the difference between the phase velocities lies in the average velocities only:

U,=U, =2-2R% (0.2.8)

The soluion of the model equations (2.1.8) for a high column (0=¢<107

0=Pe}1=gFoj <107 for Foj <1, j=12, Fo, =01, Fo,=0.01 K, =1 K02=0_1)1 using the

iterative algorithm [5] in Chapter 8 and (6.1.7) permits to obtain the average concentrations
Ci(zi) (Figs. 6.1 and 6.2) and the functions Ai(zi) J=12 (Figs. 6.3 and 6.4).

The functions * =) 1=12 presented on Figs. 6.3 and 6.4 show that linear
approximations are possible to be used:

Aj =a0j+a1ij, j=1,2. (029)
The obtained (“theoretical”) parameters’ values are presented in Table 6.1.

-1 _ . .
In the case of high columns (Pei ‘8‘0) the average concentration model of a counter-
current physical absorption process has the form:

dC - S =
(am +allzl) le +a11C1 = _KOI (Cl _Cz); Zl =0, Cl (0) =1
1

dC, - - -
(aoz"'a'lzzz)?z"'aizcz =Koy, (Cl_CZ); Z,=0, C, (O):O'
: (0.2.10)

The obtained average concentrations Ci(zj)’ =12 (Figs. 6.1 and 6.2) permit to obtained

“artificial experimental data” for different values of Zjj=12:
Co(Z)=(095+0.18)C,(Z,,), m=1..,10,

1exp

Z,=01In, n=12.,10, j=12, (0.2.11)
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Fig. 6.1 Average concentration C:(Z) for Fo=0.1 Fo, =001 Ky =1, K;,=0.1
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Table 6.1 “Theoretical” “Experimental” values

Parameters  values values

of A2) =12 4 a, =1.0316 al, =1.2242 al, =0.9264 a, =0.8888
Fo,=0.1, Fo, =001, a, =0.1225 a’ =0.4759 al, =0.1564 a2 =0.0798
Kn=1 K;=01 a;, = 0.6664 ag, =0.7191 a;, =0.5863 aj, =0.6021
where a,, =0.1036 a’, =0.0223 a, =0.1096 a’ =0.1289

0<S,<1,m=1..10
are obtained by means of a generator of random numbers. The obtained “artificial
experimental data” (6.1.11) are used as illustration of the parameter identification in the
average concentrations models (6.1.10) by minimization of the least-squares functions
Q. n=12,.,10 anq Q:

10
Q, (vaagl’afllagzvainz)z Z[Cl

m=1

+i|:c_2 (ZZn'a[rJ]Z'ainz)_EZr::xp(ZZn):|27 Zn :Zln :ZZn :0'1n7 n:1’ 2’
m=1

(Zln ’ agl’ afl)_ c_:1ne]><p (Zln ):|2 +

10
Q a81la1011a8 ,af = Qn Zn’agl’afllag ,af )
( 282) =20 %) (0.2.12)
where the values of Ci(zi"‘agl’alnl’agz’ainz) are obtained as solutions of (6.1.10) for different
Z,=01n,n=12..,10, j=12 The obtained

0 0 0 0 1 1 1 1 2 2 2 2
(a"l’a“’af’z’au)’ <a°“a“’a°2’a“) and (a‘”’a“’a”’a“) are presented in Table 6.1. They are used
~0 0 0 ~1 1 1 ~2 2 2
for the calculation of the functions Ot (Z8eah) C(zoan ) C(zoa%a)), (the lines i

Fig. 6.5) and C2 (Zz'aoz’a“), CZ(ZZ’aOZ’a“)’ CZ(ZZ’a"Z’aﬂ)’ (the lines in Fig. 6.6). The points
in Figs. 6.5 and 6.6 are the “artificial experimental data” (6.1.11).

(“experimental”) values



The comparison of the functions (lines) and “artificial experimental data” (points) in Figs.
6.5 and 6.6 shows that the experimental data obtained from the column with real radius and
small height (Zj =01 j:1'2) are useful for the parameters identification.

1.2 Chemical absorption

The chemical absorption (% =2) is a result of the chemical reaction between the absorbed
substance in the liquid phase (‘= 1=2) and a reagent in the liquid phase ('=1=2). If the
kinetic model of the chemical reaction is KGeCz, the convection-diffusion model of the
chemical absorption in a co-current column has the form (3.1.11, 3.1.12):

ac, d’c, 1loc, oc,
u =D, +— +— _ko(Cn_)(Clz)’

Yoz o2 ror  or

A 2 2

OCIZ 6 12 l aClZ % ClZ .
U,—= Dy, 2 ot |t K (011 _chz)_kclzczm

oz cZ r or or

A 2

Cp _ D d°c, 18(:22 +8 Co _KC..C..:
2 A - 22 2 2 12~221

oz oz r or or

oc ac oc oc oc oc

r=0 u_ T _ % _g pog, u_ e Fw g

or or or or or or

-~ _ 0 _ 0 _ 0.0 _ 0 oCyy
2=0, € =Chyy Cp =0, Gy =06y, UGy =U (r)cn - Dn oz ] )
- z=0

oc oc
ugcloz Euz(r)cloz_Du[lzJ ) USCSZ Euz(r)cgz_Dzz[; )
-0 w0 (0.2.13)
O

where i’ ¢, i=12, j=12, are the inlet velocities and concentrations in the gas and liquid

phases (2 = 0, practically).
From (11.3) follow the average values of the velocity and concentration in (6.1.13) at the
column cross-sectional area:

20 0 2"
0, =r—2J'ru1(r)dr, Iru dr, ©,(z r—z‘[rcﬂ(r,z)dr,
0 0 00

To

612(z)=r£2.[rc12(r,z)dr, Ezz(z)zr—zjrczz(r,z)dr. 0.2.14)
00 00 2.

The functions in (6.1.13) can be presented by the average functions (6.1.14):
ul(r):UlGl(r)’ uz(r)zﬁzaz(r)' CM(I‘,Z):EH(Z)CM(I‘,Z),

€ (1,2) =T (2)€ (11 2), € (1,2) =T (2)C, (1, 2). (0.2.15)
where

2% 21

r—zjr a, (r)dr=1 —ZJ'

00 0

%jlréll(r'z)dr L %J‘ ClZ I’ Z)dr— %jll’ sz(l’,Z)dI’:l.

0 ° o o (0.2.16)

The use of the averaging procedure (6.0.1)—(6.0.5) leads to the average concentration model
of the chemical absorption:



_dc, deo, __ d’c, _ _
a; U, dz + 4z uc, =Dy dz2 - I(o (Cu _chz);
_dc, da, d’c, = = ==
a,U, 4z + 4z u,C, =D, 472 +K, (Cu _chz)_ékclzczw
_dc, da, _ d’c,, .
AU, q 2+ q 2U,C,, = Dy, d 222 —0kC,,Cyp;
zZ zZ zZ

2=0, ©,(0)=c;, C,(0)=0, T,(0)=c,

221

). () (5]
dz ).,  ldz ), dz ),

(0.2.17)
where
o ~ _ 2 1) N _
au(z)zr—z‘[r a,(r)cy(r,z)dr, alz(z)zr—zjr ,(r)€,(r,z)dr,
0 o0 0 o
2% 2% N
azz(z):—zjr a,(r)¢, (r,z)dr, 5(2):—zjr €, (r, )€, (r,z)dr.
oo fo o (0.2.18)
The use of dimensionless (generalized) variables
Z = C =~ C =~ G
Z:Tr Cu:%v 12:C120}(, 22:%-
Cu Cu C22 (0.2.19)
leads to
dC, dA, = , d%C, _
Aud—zﬂ+%cn = Pe;} dzzﬂ ~Kg (G =Cpy):
dC, dA, =~ , d°C, - _
Aiz dzlz + (gz C12 = Pelzl dZ;Z + Koz (Cn_clz)_AKngclzczz; (O 2 20)
dC,, dA, = L, d%C, I
Azzd_zzz+%czz+:PeQ; Zz”—AK?CuCZZ,

Z=0
where

ql 0, |

Pe, =——, Pe,=—%, Pe,, =—*,

11 D11 12 D12 22 D22

K, )

Kojzﬁi;ﬁl, j=12, K:E—I.
i 2 (0.2.21)

From (6.0.2), (6.0.3), (6.0.6), (6.1.3) and (6.1.4) for the co-current flows (2=%=2) follow
the expressions



clj(rOR,IZ)_Clj(R,Z) _ L

¢, (rz)= AR ,clj(z)zzchlj(R,z)dR, i=12,
ca(re) - =I5 e 2)-ofre. R
) (2)-5, 12)- 4, )= R0, (LT ar, -1

)

5&)aﬂi)=A@)=ﬂR é&zﬂ @&z)dR (02.22)

A practical case leads to has the following orders of magnitude of the model parameters in
(4.1.14):
CO

Fo, =01 s=1112,22, K,=K, =1 Da=K-=L=1

0 0 0
ull:l ul

0 ! O_‘ 0

u3 u; o (0.2.23)
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The use of the parameter values (6.1.23) for solution of the model equations (3.1.20)

permits to be obtained the functions C(R1Z):C(RZ).C(R.Z) ang after that the functions

611(2)'612 (Z)’C_zz (Z)’ Au(z)' A, (Z)’A(Z) in (6_1.22) (Figs_ 6.7_6_9)’ where
Uj=2-2R%j=12 From the Figs. 6.7-6.9 it is seen that the functions Ai(2). A, (2),4(2)
can be presented as linear approximations

Au(z) =y +ay, Z, Aiz (Z) =yt Z, A(Z) = 50 +6lz (0224)
with the approximations parameters being



a,, =104, a, =005 a, =107, a, =008 &,=101 5 =0.03. (0.2.25)

From (6.1.25) it is seen that the maximal effect of the velocity non-uniformity on the

function A(2) is about 4 % and cannot be registered experimentally, i.e. A(Z)El.

The parameters identification in (6.1.24) is possible to be realized similar to the case of the
physical absorption.

2. Adsorption processes

In the adsorption process [7-10] participate two reagents (o :2), where the first is in the
gas or liquid phase (‘=1 1=12) and the second is in the solid phase (=2 1=3). The
adsorption is the process of mass transfer of an active component (the substance, which is
possible to be adsorbed) from the gas (liquid) volume to the solid interface due to a
physical (Van der Vaals’s) or chemical (valence) force [1]. The rate of the adsorption
process determines analogically the chemical reaction rates, where law of mass action is
changed by the law of surface action.

The convection-diffusion type models of the adsorption processes in the gas (liquid)-solid
systems are possible to be obtained from (2.0.1) if 1=13=23 (l=a+a=a+ay =2
where i=1 is the active component (AC) in the gas (liquid) phase, 1=2 - the active sites
(AS) in the adsorbent (solid phase). The volume adsorption rate in the case of a solid

adsorbent is Q: =2Qu [kg-mol.m>.s7'], where by [m 'mi] is m’ of the inner surface in the
solid phase (the surface of the capillaries in the solid phase) in 1 m® of the solid phase

2 o1
(adsorbent), %, [kg'mOI'm S ] — the surface adsorption rate. A gas adsorption will be

considered for convenience, where % [kg-molm™] is the volume concentration of the AC
in the gas phase (elementary) volume, %= [kg-mol.m>] — the volume concentration of the
AC in the void volume of the solid phase (adsorbent), ®» [kg-eq.m~] — the volume
concentration of the AS in the solid phase (elementary) volume (1 kg-eq AS in the
adsorbent combine 1 kg-mol AC), =4+, W=U(r) _ \elocity of the gas phase [m.s™'],
Us =0 (solid phase is immobile). All concentrations are in kg-mol (kg-eq) in 1 m° of the
phase (elementary) volume. The inlet gas velocity in the column is W =F/am where T s

the column radius [m] and P _ the gas phase flow rates [m®.s]. The average velocities ™
of the gas phases in the column are supposed to be equal to the inlet gas velocity in the
column,

2.1 Physical adsorption

In the cases of physical adsorption on a solid surface [7] the adsorption rate is proportional
to the surface concentration of the free AS (which may be associated with the molecules of
the AC) and the volume concentration of the AC:

Qé = klcls [1_LJ'
I (0.3.1)



where ki [ms™'] is the adsorption rate constant, I~ [kg-eq.m *] — the surface concentration
of the AS, which is linked to the molecules of the AC (the surface concentration of the

adsorbed AC), 7~ [kg-eq.m 2] — the maximal surface concentration of the free AS. The
surface concentration of the free AS is (7.-T ).
The physical adsorption process is reversible and the desorption rate could be obtained by

analogical consideration, represented as:
G =kl (0.3.2)
where K. [s7']is the desorption rate constant. The resultant adsorption rate is
r
Qo :Qé _Qo2 =kCyg (1_F_j_kzr~

©

(0.3.3)
The volume concentration of the free AS in the solid phase (adsorbent) ¢z and its
maximum value [kg-eq.m ] are possible to be obtained immediately:
ngzb(roo_r), C§3=b1_'w (034)
and from (2.2.3) and (2.2.4) follows the expression for the surface adsorption rate:

Cgs Cys
Qos = k1C13C23 - kz b_(l_ Czs ), Czs =0

: ¢ (0.3.5)
Let us consider a non-stationary gas adsorption in a column apparatus, where the solid
phase (adsorbent) is immobile. The convection-diffusion model of this process is possible
to be obtained from (2.0.1), where the diffusivity of the free AS in the solid phase
(adsorbent) volume is equal to zero. If the rate of the interphase mass transfer of the AC

from the gas phase to the solid phase is o (€ =Cs) and the process is non- stationary as a
result of the free AS concentration decrease, i.e. the convection-diffusion model has the
form:

A 32 A2
oCy 6Cn _ [C Cy +18011 i 0 Cy
11

ot oz oz ror  or?

]_ko(cn_cla);

dc c c
— = ko (Cn _013)_b0k1C13 %"' kzcga ( _33];

t Cz 2 (0.3.6)
dc C Cp |

dis = _bo k1C13 é + kzcgz (1_£Jv

where t is the time, P is the diffusivity of the AC in the gas phase and ko is the inter-
phase mass transfer coefficient [s]. In (2.2.6) =% (t"2) and ("2) are parameters in

0
5= (t1,2) gng € =% (t1.2) The concentration of the adsorbed AC is ().
The model (2.2.6) represents the decrease of the concentration of the AC (free AS) in the

part of the elementary volume #: () due to the physical adsorption.

r

Let us consider an adsorption column with a radius ™ and a height of the active volume !,

The boundary conditions of (2.2.6) have the form:



oc oc
t=0, c¢,=¢), C;=0, c,=c; r=0, a—;lso; r=r, a—;lzo;
-0 _ 0 0.0 _ °_p ac, .
z=U, C, =¢Cy, ulcll_ul(r)cll 11 oz )
z=0

(0.3.7)

where U is the inlet (average) velocity of the gas phase.

The use of dimensionless (generalized) variables [1] permit a qualitative analysis of the
model (2.2.6), (2.2.7) to be made, where as characteristic scales are used the average
velocity, the inlet concentrations, the characteristic time % (s) and the column parameters (

I’O,l):

t r z u C c
T=— R:—, Z=—, U= 1 C _Cll C13= 13 C _ 723

to f h ulo ’ " C101 , C101 B 023 (038)
If (2.2.8) is put in (2.2.6), (2.2.7), the model in generalized variables takes the form:
aC,, ac 8°C,, 1oC, o°C
LU (R)=E =Fo U Z K (C,—-C.);
7 VRS (5 z R o ) (CuCa)
dc c
d—T13= K;(C-C,)~K,Cy,Cys + Kzﬁ(l—czs);
1
dC 0
d_-Fa = _Kl ?Ticlsczs + Kz (1_C23);
T=0, C,=1 C,=0, C,=1 R=0, €y =0, R=1, Cy =0;
R R
Z=0, C,=1 lsU(R)—Pel(%j ,
Z Jzo (0.3.9)
where (RZ) are parameters in C13(T'R'Z), Ca(T.RZ) and
0 2
U, Iy D, ut |
k|
Ko=—2, K =kt’h, K,=kt® K,=Kkt"

(0.3.10)

. . -2
Practically for long duration processes °=7<10" and the problem (2.2.9) has the form:
oC o’C, 1eéC, o&°C
VR :Fo(g 2t TRR aRZMJ_K(’(C“_C”);

dc co
2 = K3 (Cn - C13 ) - K1C13C23 + Kz C_?(l_ Czs);

dT o
dc 0

d-F3 = —Klsl?:cmcﬁ +K, (1—C23);
T =0, C13 =0, C23 =1

rRoo, Lu_g rog, Lu_g

oR oR
Z=0, CME]_, ]_EU(R)_Pel(aCuj ’
0 Joa (0.3.11)
where T is a parameter in Cs(T.RZ),



For big gas velocity 0=Fo<10? 0=7<10" 34 from (2.2.9) follows the convection type
model

U(R)% —

dz =-K, (Cll_ClS);
dC,,

dT
dc c
d_T23 = _ch_zclsczs + Kz (l—C23);

T=0 C;=0 Cy,=L Z=0 C=1l (0312)

c®
= Kz (Cn _ClS)_ K1C13C23 + Kz C—203(1—C23);

11

In the cases of high columns (0=¢<10") the problem (2.2.11) has to be solved in zero
approximation with respect to & (¢=0 Pe” =&Fo=0).

oC 10C, o°C
R=0, oCy, =0. R=1, %50; Z2=0, C,=1
R (0.3.13)
dc A
d'Fg =K, (Cn _Cl3)_ KiCiCos + K, C—?(l—ng); T=0 C,=0.
7 (0.3.14)
dc c
d_'l'23 = _ch%clscm +K, (1_C23); T=0 Cp=Ll
2 (0.3.15)

The solution of the model equations (2.2.13), (2.2.14), (2.2.15), using a multi-step
algorithm (see Chap. 9 and [10]) is obtained in the case of parabolic velocity distribution
(Poiseuille  flow) in the gas phase U(R)=2-2R’
Fo=10" K,=K, =K, =c%, =1 K,=10%, ¢} =107  The
Cu(06,RZ) o Cu(T.022)
2.2 Chemical adsorption

The presence of chemical bonds between the AC and AS at the solid surface leads to the
next expression [1] for the adsorption rate:
_ T o,
Q =k, exp( E/RT)EZS li;[pi Z, : 03.16)
where % is the part of the face interphase occupied by the molecules of the substances A
(s = 1,...m), Pi— the partial pressures (volume concentrations) of the substances Bi(i=
1,...,n) in the gas (liquid), “— the part of the free surface, which is able to realize physical

bonds with the molecules of the substances B(J=L-+M. M _ the number of the AS at the
interface, which realize the physical bonds.

and the parameters values
concentration  distributions
, for different T and Z, are presented in Figs. 3.3 and 3.4.

chemically with a part of the molecules B.(i=1...n) \while the other part realize physical

bonds with the active places ™ The heterogeneous reaction rate and the reactions orders
are @ a,(s=1..,m) and p.(i=1..n).
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In the cases of reversible heterogeneous chemical reactions the equation of adsorption rate
follows from (2.2.3) and (2.2.16)

0=k ﬁci /(1+Zn:kpici],

(0.3.17)

Koiare the equilibrium constants of the reagents

where



All equations of the adsorption kinetics [1] are based on the ideal adsorption layer model.
Practically the main part of the adsorption processes are related with real adsorption layers,
l.e. the adsorbent surfaces are non-homogeneous as a result of the changes of the solid
phase structure.

The convection-diffusion model of the chemical adsorption [7] is possible to be obtained on

the basis of the two-phase processes model (2.0.1), where 4t and #: are the parts of the gas

phase and sorbent particles (solid) phase (& +&=1) of the medium elementary volume in

the column apparatus, where the solid phase is immobile (”320). The volume
concentrations of the AC in the gas phase and in the void volume of the solid phase

(adsorbent) are % and %s [kg-mol.m™]. For the interphase (gas-solid) mass transfer rate it

is possible to use ko(cn—cla), where o s the interphase mass transfer coefficient. The
adsorption rate in the solid phase (similar to two components chemical reaction) is

presented as KCuCz, where = [kg-eq.m™®] is the volume concentration of the (AS) in the
solid phase (particles volume), k— the chemical reaction rate constant (1 kg-eq AS in the
adsorbent combine chemically 1 kg-mol AC in gas phase). All concentrations are in kg-mol
(kg-eq) in 1 m® of the phase (elementary) volume.

The diffusivity of the AC in the mobile gas phase is Du. The convective transport of AC
and AS in the solid phase is not possible. The diffusion mass transfer of AC in the solid
phase (Knudsen diffusion) can be neglected due to the small value of the Knudsen
diffusivity. The diffusivity of the AS in the adsorbent phase (particles volume) is equal to
zero, too.
If the process is non-stationary as a result of the free AS concentration decrease, the
convection-diffusion model of the chemical adsorption has the form:
P 2 0 52

%: ko (Cnfclz)*kcmcza =0, d;:is =k C13Cos- (0318)
The initial and boundary conditions of (2.2.18) are:

t=0, ¢, =Cy, Cy=0, Cp=Cy; (0.3.19)

=0; r=r, =0;
or or

ac
_ _ A0 0~0 _ 0 11
Z_Ov 011=011’ UICM=U1(I’)C11—D11 '
or ),

where WS are the inket velocity and the concentration of the active component in the gas

r=0,

phase, ¢ the initial concentration of AS in the solid phase.
The using of dimensionless (generalized) variables

t r z U Cu Cia Cas
T=% R=— Z=% U=—, C;=-—¢ 5= Cu=

t r, | u, Cy , Cy = g (0320)
leads to:



oC oC o’c, 1éC, oC
r U (R) 2 :Fo(g R b T aR;l]—Ko(cn—c:B);

dcC,

dC
= Ka (Cn - C13 ) - KC33C13C23; d_T23 = _Kclolclscza;

T=0 Cy=1 C;=0 Cu=L
oCy, _0 R=1 oCy, _o:
oR R

oC,

Z=0, C,=1 1=U(R)-Pe*[Z2]| |
. (R) e(azjzo

are parameters in o (T-RZ) Cx(T.R.Z) gpq

(0.3.21)

where (RZ)

I ul I r Y’
FOZ 0.2 Pez—, ]/:ﬁ’ E=| — s
u, Iy  Da u t |
K =kt°, KO:ULO, K, =kt°.

1

(0.3.22)

For lengthy processes it is possible to use the approximation 0=y

oc C. 14C. &C
U(R)Z1 — ko n, 1% OCu )| e e
(R)Z (8 922 "R R R J 0(Cu=Cus)

dc dcC
=Ko (CaCa) ~KeRCCai R =K CCon 03.23)

T=0 C,=0 C, =1

rReo Cu_g proy Lu_g
R

OR
Z=0, C,=1 ]-EU(FQ)—Pe’1 _6C11 :
oz ),_,

<107.

where T is a parameter in Cll(T'R'Z).

In the cases of high columns (¢£<107") the problem (2.2.21) has to be solved in zero
approximation with respect to ¢ (&=0):

aCy, oC 16C, o&°C

—+U(R 11 —Fo 1y 1 1_K,(C,-C,);

7 aT ( ) az ( R aR aRZ J 0 ( 11 13)

dC dc

d'F3 = Ky (Cyy —Cys) — Ke3iCiiCos; d—_|f3 =-KcC,.Cysi
T=0, C;=1 C;=0 Cy=l

R=o Cu_g proy Lu_g

oR R
270 Gu=t (0.3.24)

For big gas velocity 0=Fo<10? 0=7<10" anq from (2.2.23) follows the convection type
model

dc
U (R)d—Z“ =—K,(Cy—Cy)
dc dc
=K (Cy = Ci) - KeRCiCoi ~ 22 = ~KeiCiCo

T=0, C;=0, Cy=L Z=0, C,=], (0.3.25)



Cyu(T.RZ) Cu(T.R.Z)

where T is a parameter in , while R and Z are parameters in and

Cx(T.Z,R)

2 Adsorption processes modeling
2.1 Physical adsorption
The convection-diffusion model of the non-stationary physical adsorption in the column

apparatuses [6, 7] has the form (3.2.6, 3.2.7):

- N ~2 2
OCll OCll % Cll 1 aCll a Cll .
—tu —2=D, +=—L+—2 |-k, (cy —Cy);

ot 'z o2 ror or?
dC13 _ k b k C23 k 0 C23 .
- o(cn_cla)_ 0 1013T+ 2Ca3 "o |
dt Cys Cys
dc c c
2 = 7b0klcl3 % + kZC§3 1*% ;
dt Cys Cys
0 0 ocy, acy,
t=0, ¢;=¢,;, ¢€3=0, cy=cCy; r=0, —=0; r=r, —=0;
or or
oc
_ _ A0 0.0 _ 0 11
Z*O’ C11=011’ Ulcn:Ul(l’)Cn—Dn[ oz .
(0.4.1)

From (11.3) follow the average values of the velocity and concentration functions in (6.2.1)
at the column cross-sectional area:

2% _ 2 %
U, :ro—z.[rul(r)dr, cu(z):ro—zjrcu(r,z)dr,
0 0

~ 2 _ 2
013(2):r_zjrq3(r,z)dr, czs(z):r_z.[rcm(r,z)dr.
0 0

0 0

(0.4.2)
The functions in (6.2.1) can be presented by the average functions (6.2.2):

u (r)=aa,(r), c,(trz)=c,(tz)¢,(trz2),
Cis (t' r, Z) =Ty (t' 2)613 (t' r, Z)* Cy (t’ r Z) =Cy (t,Z)CB (t,r, Z)’ (0_4.3)

where
27 27
—erul(r)dr =1, —zjrcll(t,r,z)dr =1,
o o b o 0.4.4)

%J.réls(t,r,z)drzl, %J'réza(t,r,z)drzl.
r‘O 0 r0 0

The use of the averaging procedure (6.0.1)—(6.0.5) leads to the average concentration model
of the physical adsorption:



ot, _0C, Oa__ 0%t _
6'[11 U azn+§u1011:DllaT;l_ko(Cu_Cm);
délS = = = 623 0 [ CZS]
=Kk, (T, —Cu)—bk pBC,—=+k,Cpp| 1——=
dt O( 11 13) 0L 13 C23 2723 Cg3
dc,, _ T 0[ c, j
=-bk AT, B +k,Cp | 1--2 |;
5’[ 01 13 023 2723 023
t=0, 6115(:1011 €, =0, 6235(:23 z=0, ¢, = 01! (acuj =0
2 Jrno (0.4.5)
where
2% s
a:a(t,z):r—zjrul(r)cll(t,r,z)dr,
00
2% s
/)’zﬁ(t,z)=—2jrq3(t,r,z)cza(t,r,z)dr.
fo 0 (0.4.6)
The use of the generalized variables
t z =~ T = G =~ G
T==, Z=7, an%v 13201_03’ 23:%1
t I Ciy Cyy Cos 0.4.7)
leads to:
oC, oC, OA= L, 0°%C, -
6T11 +Aa—zﬂ+a—zc11 —Pe™ azil -Ky(Cii —Cyy);
dC, ~ _ e,
dTlg: 3(C11_Cl3)_BK1013C23+K2 03 (1_C23)
1
dc. o _ _
d'|f3 =7bh Ctl CisCy + K, (1_C23)1
23
T=0, C,=1 C,=0, C,=1 Z=0, C,=1 (aaczﬂj =0,
z-0 (0.4.8)
where
Kozk—%l, K, =kt’h,, K,=kt’ K,=kt°
ul
AT.Z)=a(tT,1Z)=a(t,z) szU(R)C“(T’R’Z)dR
) = ’ =a [l = = /= N 1
’ ! C.(T,2)
L CL(T,R,Z)C,(T,R,Z
B(T.Z)=B(tT,12)=A(t.2)=2[R u(T.RZ2) Cx (TR, )d,
. Cu(T,Z) C,(T,z2)
1 1
Cu(T,2)=2[RCy(T,R,Z)dR, Cy(T,Z)=2[RCy(T,R,Z)dR,
0 0
1
Cys(T.Z)=2[RCy (TR, Z)dR.
o (0.4.9)
In (6.2.8) Z is a parameter in Cla(T’Z), Cx(T.2) and T is a parameter in CII(T'Z).

Practicall, for lengthy (long-term) processes °<7<10" and high columns (
0=z<10%, 0=Pe" =sF0<10” for Fo<1)the problem (6.2.8) has the form:



dC, dA = = =

dzll +EC11 =-K, (Cu _C13);

dC, ~ = ~ = oy =

133 = K3 (Cn _C13)_ BK1C13C23 + Kz C—203(1—C23);

11

A

% - —BK1%C_13523 +K,(1-Cy);

T=0, C,=1 C,=0 Cy=1 Z=0, C,=1 (0.4.10)
The solution of the model equations (3.2.11), using the multi-steps algorithm (see Chapter 9
and [7D), for the case 0=£<10? 0=Pe'=¢Fo<107,

Fo=10", K,=K, =K, =¢5, =1 K, =107, ¢ =107,
Cu(T,R,Z),Cy(T,R,Z),Cx(T,R,Z)

permits to obtain the concentrations

and the functions
Cu(T.Z), Cu(T.Z), Cx(T.2), A(T.Z), B(T.Z) (6.2.9). The results for A(T,2),B(T,Z)
show that B(T2)=1 ang A(T.2)js possible to be presented as a linear approximation:

A:a0+aZZ+atT. (0411)
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Fig. 6.10 Function A(T,2): (1) Z=0.2;(2) Z=0.4;(3) Z=0.6;(4) Z=0.8;(5) Z=1.0
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Fig. 611 Function A(T,Z): (1) T=0.2;(2) T=0.4;(3) T=06;(4) T=0.8;(5) T=1.0
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Fig. 6.12 Function Cu(T.2) jn (6.29):(1)T=02;2T=04,3T=06;4)T=08,5)T
= 1.0; Dotted lines are solution of (6.2.10)
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Fig. 6.13 Function ¢(T2) in (6.2.9): (1) Z=0.2; (2) Z=0.4; (3) Z=0.6; (4) Z=0.8; (5) Z
= 1.0; Dotted lines are solution of (6.2.10)
The obtained (“theoretical”) parameters values are 2 =1.0471 a, =0.09025, a =-0.03770 (geq

Table 5.2). The functions Cu(T.2), AT.Z) are presented_ in Figs. 6.10-6.13.
In the Figs. 6.12 and 5.13 are compared the function CM(T’Z)obtained in (6.2.9) (the lines)

and the function Cu (T.2) obtained as a solution of the (6.2.10) (the dotted lines), where
Ko =K, =Ky =c5 =1 K, =107, ¢, =107 5y A=1.047+0.0902Z -0.0377T, B=1.

The concentration Cu(06.R.2) obtained as a solution of the problem (3.2.13) — (3.2.15) for

the case FO=10" Ko=K =Ky=c;=1 K, =107 ¢ =10" normits to be obtained the average
concentration Cll(O'G'Z)in (6.2.9) and “artificial experimental data” for different values of
Z.

Ch,(Z,)=(0.95+0.15,)C, (0.6,Z,),
m=1,...10, Zn =0.In, n=12,..,10, (0 4 12)
where 0=Sn=<1m=1..10 are obtained by means of a generator of random numbers. The

obtained “artificial experimental” data (6.2.12) are used for the illustration of the parameter
identification in the average concentrations models (6.2.10) by minimization of the least-

squares functions @ and @:
10 _ _
Qn(Zn’ao’az’a't):Z:':Cll(O'G’Zn’a‘O’"ilz’a‘t)_Cen:(p(Zn):r7
m=1

Zn =0'ln' n =1‘2""‘10; Q(aO‘az’at) =§Qn (Zn‘aolaz’at)‘
(0.4.13)

where the values of Cu(06:Z03.8.2) are optained as solutions of (6.2.10) for different
Z,=0.In, n=12,..,10



The obtained (“experimental’) values of 2:2:& by minimization of @ Q:Q:Qs are
presented in the Table 6.2.

“Theoretical “Experimental values”

values” Q Q1 Q2 Qs

ao 1,0471 2,2291 0,7962 0,8721 0,9005

az 9.9246x107* 0,6849 7.3048x107* 4.4452x107 3.1391x10*
ar —-3.7701x10 2 —0,7892 2.7259x10°* 1.8971x10°* 2.0352x10°*
Table 6.2

On Fig. 6.14 are compared the average concentration Cu(2) (the lines) as a solution of

(6.2.10) for the parameters values %22 obtained by the minimization of @ and @ in
(5.2.13) with the “artificial experimental data” (6.2.12) (the points). The result presented
shows that the parameters identification problems of the average concentration models is

possible to be solved using experimental data obtained in a short column (Z£=0.1) with a
real diameter.

1
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Fig. 6.14 Function ©:: 1 - minimization of Qy; 2) - minimization of Q; (circles) - “artificial
experimental data” (6.2.12)

2.2 Chemical adsorption

The convection-diffusion model of the non-stationary chemical adsorption [6, 7] has the
form (3.2.18, 3.2.19):

a;l +U, 060;1 - Dn[aaz(:gljuiagiwﬁ}—ko(cu—cm),

dc dc
T;z = |(o (Cn —Cy ) - k013023 =0, dis = _kclsczs;

0

t=0, c,=c}, C;=0, Cy=Cy; (0.4.14)




r=0, ac”—o; r=r %=O'

or a7
_ A0 0.0 _ 0 ocy,
=0, Cy =Cpy, ulc11=u1(r)011_D11 oz .
z=0

The use of the expressions (6.2.2)—(6.2.4) and averaging procedure (6.0.1)-(6.0.5) leads to
the average concentration model of the chemical absorption:

ax, _ac, Oa__ 07C, L
87;1"'05“167;4‘5["1(:11:DllaT;l_ko(Cu_cls);
dc, _
dtlS - ko (011 _013)_ﬂkC13C23
dc, _
?23: ﬂkC13CZ3’
t=0, 6115(:101' C; =0, 6235(:23; z2=0, 6115(:1011 ((’:;Clzlj =0. (0415)
2:0 . "
where @=%(t2) ang #=5(t2) are presented in (6.2.6).
The using of the generalized variables (6.2.7) leads to:
aC, oC, OA= L, 0°C, AN
7/5_#+A5_ZM+ECH:PG aT;u_KO(Cll_ClS)’
dC_13 ~ ~ 0o~ ~ .
dT =K, (Cn _C13>_ BKcy;CisCos;
dc_:rza = _BK0101C_13623;
T=0, C,=1 C,=0, C,=1 Z=0, C,=1 [aacznj =0,
z=0 (0.4.16)
where
K=kt K, :%, K, =k,t°
1
! Cu(T.R,Z)
AT,Z)=a(t,T,1Z)=a(t,z)=2|RU (R)—=~——""2dR,
L CL(T,R,Z)C,(T,R,Z
B(T.2)=A(4T.1Z)=p(t.2)=2[R Al ) Car( )4
o Cu(T.Z) C,(T.2) (0.4.17)

1 1
C.(T.2)=2[RC,(T,R,Z)dR, C,(T,Z)=2[RCy4(T,R,Z)dR,

0 0

1
Cys(T.Z)=2[RCy, (T,R,Z)dR.

0
Cu(T.2)

Practicall, for lengthy (long-term) processes °0<7<10" and high columns
_ 2 A_pal_ 2
(0=¢10%, 0=Pe™ = sFo10 ) the problem (6.2.8) has the form:

In (6.2.8) Z is a parameter in 5(T-Z), Cx(T:2) and T is a parameter in



dC, A ~

A dz d_ZCM =-K, (C_n _C13);
dC, S _
= Ks (Cll —Cps ) - BKC§3C13C23;
dT
dC, ~ =
d_T23 = _BKC1O1C13C23;

T=0, Cy=0, Cyu=L Z=0, Cy=1 g4 1g)

The soluton of the model equations (3.2.23) for the case 0=¢<107,

_ -1 _ -2 _ -1 _ _ _ A0 _ 4. 0 _ -2 . .
0=Pe”=sF0<107, Fo=10", K=K, =K;=C; =1 ¢; =107, permits to obtain the average

concentrations Cu(T:2):C(T:2).C5(T.2) ang the functions A(T+2) B(T:2) iy (6.2.9). The

results for A(T.Z). B(T'Z)show that B(T.z)=1 and AT.Z) is possible to be presented as a
linear approximation:

A=a,+a,Z+aT. (0419)
The obtained  (“theoretical”’)  parameter values are

8, =-3.7696.10"The function (T-Z)is presented in Figs. 6.15 and 6.16.
The parameters identification of the chemical adsorption models is similar to the physical
adsorption case.

a, =1.0471, a, =9.9247.102,
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Fig. 6.15 Function A(T,2): (1) Z=0.2;(2) Z=0.4; (3) Z=0.6;(4) Z=08;(5) Z=1.0
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Fig. 6.16 Function A(T,Z): (1) T=0.2;(2) T=0.4; (3) T=0.6;(4) T=0.8;(5) T=1.0

In the cases of physical absorption [1-4] in a high counter-current gas-liquid column the
mass transfer process model has to be presented in a two-coordinate system (see (3.1.8)):
oC; 16C. &°C. .
U, (R =Fo, [aa—F;*aT5]+<—l>’ K,(C.-C,);

ac, ac, _
R=0, —=0; R=1 —=0; j=12

OR oR
Z,=0, C, =L Z,=0, C,=0. (0.4.20)

1. Convection-diffusion type model
Let us consider the convection-diffusion type model (8.0.1), where the velocity
distributions in the phases are of Poiseuille type [5] and the difference between the phase
velocities is in the average velocities, only:

Ul=U2:2—2R2. (051)
From (8.0.1) and (8.1.1) it is possible to obtain the next form of the problem for computer
modelling of the absorption processes in counter-current column apparatuses:

o _ . [1 ac,  &°C,
1

(2-2rR?) 0 =t asz—Kl(Cl—Cz);

az,
R=0, %Eo; R=1 %zo; z,=0, C, =1 052)
oC 1oC, o°C
(2_2R2)622 = Fo, (E 6R2 + 8R22j+ K,(C,-C,);
2
rR=0, Lz_0, r=1 L2-q; z,-0, c,=0
R R (0.5.3)

1.1. Calculation problem



The numerical solution of the equations set (8.1.2), (8.1.3) is possible if

an iterative

procedure is used [6], where the concentration distributions in the column will be obtained

in two matrix forms on every iteration step s:
C(RZ)=|a.|. p=12,..p" & =12..¢,
0<R<l 0<z,<1 R=2L z._&71 o r
p -1 ¢ -1 (0.5.4)
p=12,..0° &,=12..¢°,

Czs(R’Zz):

s
bP§2 !

0<R<1, 0<z,<1 R=£27L z-%71
p -1 ¢ -1 (055)
The iterative procedure starts with the zero step s=0:
CS(R,ZZ)=||b2¢Z||EO, p=12,..p0" & =12,..C%
CY(RZ)) =[] p=12...0° ¢ =12..¢°, (0.5.6)
c’(RZ,)

where is a solution of the problem:

0 0 2~0

(2—2R2)2%: Fo, [% aaCRl + aaRC; ]— K,C%;
1

ocy

: acy _ . 0
=0, R=1, =0; 7,=0, C)=1.
R R (0.5.7)
The solution of (8.1.7) permits to obtain a new function:
C?(R2,)=C}(R1-2,)=C}(R,Z,) =&

PG

R=0,

p=l,2,...,p0, §2=l,2,...,§0. (058)
The iterative step s is the solution of the problem:
aC; 10C; 0°C; A1) s).
(2—2R2)azz =F02[E o aR22j+ K, (C-¢3);

6%50; R=1 a(;zz(); ZZ=0, CZSEO,

R=0,

(0.5.9)

A(s-1)
a/’§ 2

CE(RZ,)=

— 0 _ 0
where L P=12.0p0" 51208 |
The solution of (8.1.9) permits to obtain a new function:

C;(RZ,)=C5(R1-2,)=C; (R.Z,) =|b;

P&

p=12,...p0" & =12..,°, (0.5.10)
which will be used for solving (8.1.2) at the s" iterative step:

(2—2R2)aCls :Fo{l oc; +62CISJ—K1(C15—CE§);

oz, ROR OR’

acs ac;

R=0, —2=0; R=1 —2=0; 2,=0, C}=L

(0.5.11)

The solution of the problem (8.1.2), (8.1.3) is possible to be obtained using MATLAB
program. It solves the equations (8.1.9), (8.1.11) through iterative procedure, using the
built-in MATLAB function pdepe, which solves the initial-boundary value problems for

parabolic partial differential equations. The obtained matrices ¢ (from (8.1.11))) and C,
(rom (8.1.9))) are introduced in (8.1.9) and (8.1.11) respectively using the built-in

MATLAB function interp2.



The stop criterion of the iterative procedure is the condition:

s (s
apﬁ Pé

a;Q
1.2. Concentration distributions
A solution of the problem (8.1.2), (8.1.3) is obtained for the case 0 =01 Fo,=00L

K, =1 K,=0.1 C;(RZ;) g, Z,=02050810,j=12

<10°, p=12,...p0° ¢ =12,...¢°
(0.5.12)

and the concentration distributions are

presented on Fig. 8.1 and Fig.8.2. These results permit to obtain Ci(zi)’Ai(Zi)’ =12
(6.1.7) (Figs. 6.1-6.4) and “theoretical” parameters values (6.1.9) presented in Table 6.1

in

1
09— —
0.8 7 ~.
0.7} ~—_
—~ 06+ T . ~

N .

X< 05; ~ ~
QS0.4 T~ \
0.3} ~—_
0.2}

0.1+

0 i 1 ' i J
0 0.2 0.4 0.6 0.8 1
R

Fig. 8.1 Concentration distributions C(R.Z,)
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Fig. 8.2 Concentration distributions C.(RZ,) at F0,=0.01, K»=0.1:
(1)- C, (R,O.Z)-; 2)- C, (R,O.S)-; (3) C,(R,0.8) : (4)- C,(R1)

1.3. Absorption process efficiency

The solution of the problem (8.1.2), (8.1.3) permit to obtain the absorption efficiency g and

the gas absorption degree G in the column using the inlet and outlet average convective
mass flux at the cross-sectional area surface in the column:

g =)~ 2 fru, (r)e,(r)dr, 6=
fo o UG (0.5.13)
The absorption degree in generalized variables (3.1.4) has the form:

G =1—2j RU, (R)C, (R,1)dR.
0 (0.5.14)

In the cases of absence of the velocity radial non-uniformity (
degree has the form:

Ur=U. =1y tne absorption

1
G, =1-2[RC, (R,1)dR
0 (0.5.15)
and the reduction in the process efficiency due to the radial non-uniformity of the velocity
is shown in Table 8.1.

Table 8.1 Absorption degree Fo0;=0.1, U,=U, = 2-2R? U ,=U,=1
2. Average-concentration model K;=1

In the cases of unknown velocity F0,=0.01,

distribution in  high  counter- K,=0.1

current columns the average- G 0.5814 0.6336

concentration model (6.1.10) is
possible to be Hsed for the physical absorption modeling:

dC - =~ = =
(301+a1121) le +a11C1 :_KOI(Cl_CZ); Zl =0, Cl(o):]"
1

(aoz +a1222)%+a1262 =Ky, (61_62); Z,=0, 62 (O):O’
2 (0.6.1)
where %1% 1 =12 are the “theoretical” parameters values presented in Table 6.1.
2.1. Calculation problem
The numerical solution of the equation set (8.2.1) is possible if MATLAB and an iterative
procedure are used [6], where the average concentration distributions in the column will be
obtained in two vectors forms on every iteration step s:

=s s 0 é/l_l
Cl Zl = m17 4’1:1,2,...,4’, nglg]_’ 21: L )
e ¢-1 (06.2)
. S 0 -
Ci(z,)=|n:]. ¢ =12..¢°% 0<Zz,<1 Z,=22"".
4 ¢'-1 (0.6.3)

The iterative procedure starts with the zero step s=0:
~0 Lo |l — _ 0. [~0 _lo _ 0
C2(Z)=[n%|=0. &=12..¢% C(z)=|m], &=12..¢° (0.6.4)

C!(z)=|m

where is solution of the problem:



dc? = - =
(am +ai1zl)d_zl+aucio = _chlo; Z, =0, Cf (O) =1

1 (0.6.5)
As aresult is possible to obtain
C/(2,)=C/(Z,=1-2,). (0.6.6)

The iterative procedure s is the sequentially solving the equations:

dC; ~s (s ~s =s
(Boz + 27, )5+ 2,CF = K,(CFY-C3); z,=0, C3(0)=0;
’ (0.6.7)
d C_ls ~s ~s s ). =s
(a01+a1121)d7+a11C1 =-K, (C1 _Cz)' Z =0, Cl (0) =1,
) ' (0.6.8)
where

C(z,)=CY(z,=1-2,), C;(z,)=Ci(z,=1-2,). (0.6.9)
The stop criterion of the iterative procedure is the condition:

(s-1)
m, —my

s —
5

<10%, £, =12,..¢°
m

S

[

(0.6.10)
The solving of the problem (8.2.7), (8.2.8) was obtained by MATLAB program, using

3 (s-1) _CeY (7
iterative algorithm. First it solves the equation (8.2.7) using C(Z) =G (2=1-2,) gpq
the built-in MATLAB function ode45, which solves non-stiff differential equations by

medium order method. The obtained matrix ©:(%)=C2(Z:=1-2)) s introduced in (8.2.8)
using the built-in MATLAB interpolation function interpl.
The presented approach is used for the parameter identification in Chap. 6.



