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In the course are presented the methods for modeling and simulation of absorption and 
adsorption processes in column industrial apparatuses, developed in the monographs: 

Chr. Boyadjiev, “Theoretical Chemical Engineering. Modeling and simulation”, Springer-

Verlag, Berlin Heidelberg, 2010, pp. 594. 

Chr. Boyadjiev, M. Doichinova, B. Boyadjiev, P. Popova-Krumova, “Modeling of Column 
Apparatus Processes”, Springer-Verlag, Berlin Heidelberg, 2016, pp. 313. 

Will be discussed the convective-diffusion and average-concentration models in 
approximations of Mechanics of Continua in cases of physical and chemical absorption in 
gas-liquid systems and physical and chemical adsorption in gas (liquid)-solid systems. The 
models considered are suitable for qualitative and quantitative analysis of the absorption 
and adsorption processes in industrial column apparatuses. Will be discussed the 
calculation problems in process simulations. 
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The modeling of two-phase gas-liquid ( 1,2j = ), gas-solid ( 1,3j = ) and liquid-solid ( 2,3j = ) 
interphase mass transfer processes in column apparatuses is possible to be used in the case 
of absorption, adsorption and heterogeneous (catalytic) chemical reactions. For the 
modeling of two-phase processes [1–5] the model equations (I.3–I.5) have to be used, i.e. 
components mass balances ( 01,2,...,i i= ) in the phases, where according (2.1.10) the radial 
velocity components are equal to zero ( 0, 1, 2,3jv j≡ = ): 

 

( )
2 2

2 2

0

0 0 0 0

0

0

1 ;

0, 0; , 0;

0, , ;

1, 2,..., , 1, 2 1,3 2,3.
j

ij ij ij ij
j ij ij ij

j j

ij ij

ij
j ij ij j ij j ij ij

j Z

c c c c
u D Q c

z r rz r

c c
r r r

r r
c

z c c u c u c D
z

i i j
=

 ∂ ∂ ∂ ∂
= + + +  ∂ ∂∂ ∂ 
∂ ∂

= ≡ = ≡
∂ ∂

 ∂
= ≡ ≡ −   ∂ 

= = = =  (0.0.1) 

In (2.0.1) ( )j ju u r=  [m.s-1] and ( ),ij ij jc c r z=  [kg-mol.m-3] are the axial velocity components 
and transferred substance concentrations in the phases, ijD  [m2.s-1] are the diffusivities in 
the phases, 

0
ju  and 

0
ijc  are the inlet velocities and the concentrations in the phases. The 

concentrations of the transferred substance in the phases are presented as kg-mol of the 



transferred substance in 1 m3 of the phase volume. The hold-up coefficients (m3 of the 
phase volume in 1 m3 of the column volume) and the inlet velocities in the column are 
obtained from the ratios 0j jF Fε =  and 

0 2
0j j ju F rε π= , where 0r  is the column radius [m], jF  

are the phase flow rates [m3.s-1] in the column, 1,2,3j = , and 

3

0
1

j
j

F F
=

= ∑
 [m3.s-1] is the total 

flow rate of the fluids in the column. The volume reactions terms 
3 1kg- mol., 1, 2,3 m .sijQ j --  =    are the rates of the chemical reactions and interphase mass 

transfer, as volume sources ( )0ijQ >  or sinks ( )0ijQ < , in the phase parts of the elementary 
column volume and participate in the mass balance in the elementary phase volumes. 
The model (2.0.1) is possible to be used for co-current two-phase flows ( 1 2z z z= = ) or for 
counter-current ones ( 1 2z z l+ = , where l  is the active zone height [m] of the column). In the 
counter-current flows the mass transfer process models has to be presented in a two-
coordinate systems [1] because in a one-coordinate system one of the equations has no 
solution due to the negative Laplacian value. The solution method of the equation set in 
two-coordinate systems will be presented in Chap. 8. 
1. Absorption processes 
The convection-diffusion type models of the absorption processes [5, 6] in the gas-liquid 
systems is possible to be obtained from (3.0.1) if 1, 2j =  ( 1 21 ε ε= + ), 1, 2i = . The kinetic 

terms , 1,2jQ j =  are the inter-phase mass transfer rates ( ) ( )0 11 121 , 1, 2j k c c jc− − =  in the gas 
and liquid phases and the chemical reaction rate ( 12 22kc c− ) in the liquid phase, as volume 
sources or sinks of the substances in the phase parts of the elementary (column) volume 
[kg-mol.m-3s-1], where 0k  [s−1] is the interphase mass transfer coefficient, χ  - the Henry’s 
number, k  - the chemical reaction rate constant. The same models is possible to be used for 
modeling of the extraction processes if χ  is the redistribution factor. 

The concentration of the transferred substance ( 1i = ) in the gas (liquid) phase is ( )11 12c c  
[kg-mol.m-3], i.e. kg-mol of the transferred substance in the gas (liquid) phase in 1 m3 of the 
phase (elementary) volume, while the concentration of the reagent ( 2i = ) in the liquid 
phase is 22c  [kg-mol.m-3] (in 1 m3 of the phase elementary volume). 

The inlet concentration of the transferred substance in the gas (liquid) phase is ( )0 0
11 12c c . In 

the cases of absorption (desorption) ( )0 0
12 110 0c c= =  practically. The input velocities 

0
ju  

( )1,2j =  [m.s−1] of the gas and liquid phases are equal to the average velocities ju  ( )1,2j =  
of the phases in the column, which are defined as 
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 (0.1.1) 
where , 1, 2jF j =  are the gas and liquid phase flow rates [m3.s-1] in the column volume. 
1.1 Physical absorption 
The physical absorption is an interphase mass transfer of one substance from the gas to the 
liquid phase. The opposite is desorption. In these cases 0 1i =  and the substance index i  is 



possible to be ignored, i.e., the concentrations will be designated as , 1, 2jc j = . As a result 
the convection-diffusion type model for the steady-state physical absorption in the column 
apparatuses has the form: 
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where ju  [m.s-1], jD  [m2.s-1] and ( ) 1, 2j jε =  are the velocities, the diffusivities and the 
hold-up coefficients in the gas and liquid phases. The boundary conditions of (2.1.2) are 
different in the cases of co-current and counter-current gas-liquid flows. 
Let us consider a counter-current gas-liquid bubble column with an active zone height l, 
where ( )1 1,c r z  and ( )2 2,c r z  are the concentrations of the absorbed substance in the gas and 

the liquid phase ( )1 2z z l+ = . The boundary conditions of (2.1.2) have the form: 
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where 
0 , 1, 2ju j =  are the inlet (average) velocities in the gas and the liquid phase. In the case 

of gas absorption 
0
2 0c = is practically valid. In the cases of co-current flows 1 2 .z z z= =  

The presented convection-diffusion type model (2.1.2), (2.1.3) permits a qualitative 
analysis of the physical absorption processes [5, 6] to be made using dimensionless 
(generalized) variables: 
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If (2.1.4) is put into (2.1.2), (2.1.3) the model in generalized variables assumes the form: 
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where 
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From (2.1.5) it is possible to obtain directly the models of the physical absorption in the 
cases of highly ( )20, 0Cχ → ≡  and slightly ( )1, 1Cχ →∞ ≡  soluble gases. 



The approximations of the film theory and the boundary layer theory of the mass transfer 
are not valid for the interphase mass transfer in the column apparatuses and the expressions 
for the distribution of the interphase mass transfer resistance between the gas and liquid 
phases (0.4.5, 0.4.12) are not possible to be used. 

From (2.1.5) it follows that 
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k l

K C
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 in the cases of a big average gas 

velocity 
0

1 1u u= , i.e. the solution of the first equation in (2.1.5) is equal to unity. The 
concentration gradient in the gas phase is equal to zero as a result of the very big 
convective mass transfer rate in the gas phase, i.e. the mass transfer resistance in the gas 
phase is very small and the process is limited by the mass transfer in the liquid phase. 

In the cases 

0
21

0 20
2

0 10 , 0
uK C
u
χ −= ≤ ≡

, i.e. the solution of the second equation in (2.1.5) is 
equal to zero. The concentration gradient in the liquid phase is equal to zero as a result of 
the very big convective mass transfer rate (big average liquid velocity 

0
2 2u u= ), i.e. the mass 

transfer resistance in the liquid phase is equal to zero and the process is limited by the mass 
transfer in the gas phase. 
These results show that the convection-diffusion type model permits to be obtained the 
dimensionless mass transfer resistances in the gas ( 1ρ ) and liquid ( 2ρ ) phases: 
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From (2.1.7) it is possible to obtain directly models of the physical absorption in the cases 
of highly ( )0 2 20, 0, 0, 0Cχ ρ ρ→ → → ≡  and slightly ( 0 1 1, , 0, 1Cχ ρ ρ→∞ →∞ → ≡ ) soluble 
gases. 
The intensification of the absorption processes is possible to be realized by intensification 
of the mass transfer in the limiting phase (practically by increasing of the convective mass 
transfer), i.e. phase with the higher mass transfer resistance. The increasing of the 
convective transfer in the liquid drops and gas bubbles has a limit, i.e. the optimal 
organization of the absorption process is the absorption in gas-liquid drops systems, when 
the resistance is in the gas phase (

2
2 10ρ −≤ ,

2
0 10ρ −≤ ), or absorption in liquid-gas bubbles 

systems, when the resistance is in the liquid phase (
2

1 10ρ −≤ ,
2

0 10ρ ≥ ). 
For high columns the parameter ε  is very small ( 20 10ε −= ≤ ) and the problem (2.1.5) is 
possible to be solved in zero approximation with respect to ε : 
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For big values of the average velocities 
2 2

1 20 Fo 10 , 0 Fo 10− −= ≤ = ≤  and from (2.1.5) follows 
the convective type model 
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For small values of the average velocities 
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follows the diffusion type model: 
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The solution of the model equations of a counter-current physical absorption in two-
coordinate systems are presented in Chap. 8 and [6]. 
1.2 Chemical absorption 
Two reagents ( 0 2i = ) participate in the chemical absorption. The first is in the gas phase (

1, 1i j= = ) and the second is in the liquid phase ( 2, 2i j= = ). The chemical absorption will 

be presented in a co-current column ( 1 2z z z= = ). Considering that ( )11 12c c  is the 
concentration of the first reagent in the gas (liquid) phase and 22c  is the concentration of the 
second reagent in the absorbent, the mass sources (sinks) in the medium elementary volume 
(in the physical approximations of the mechanics of continua) are equal to the chemical 

reaction rate - 12 22k c c  and the inter-phase mass transfer rate - ( )0 11 12k c cc− . As a result, the 
convection-diffusion model in a column has the form: 
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where ( ) ( )1 2,u r u r  are the velocity distributions in the gas and liquid phases, ( ),ijc r z  and 
( )1,2; 1,2ijD i j= =  are the concentration distributions and the diffusivities of the first reagent 

in the gas and liquid phases and of the second reagent in the liquid phase. 
Let us consider a co-current liquid–gas bubble column with a radius 0r  and working zone 
height l. The boundary conditions of the model equations (2.1.11) have the form: 
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where 
0 0, , 12, 1,2j iju c i j= =  are the inlet velocities and concentrations in the gas and liquid 

phases. In the cases of gas absorption 
0
12 0c =  is practically valid. 

A qualitative analysis of the model is possible to be made using dimensionless 
(generalized) variables: 
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The model (2.1.11), (2.1.12) in generalized variables (2.1.13) has the form: 
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From (2.1.14) follows that the absence of a chemical reaction in liquid phase - 0k =  (or 
0
3 0c = ) leads to 22Da 0, 1C= ≡ , (or 22 0C ≡ ) and as a result the model of the physical 

absorption is obtained (2.1.5). The same result is possible to be obtained in the cases 
0

222
0
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0 Da 10
c
c
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, i.e. the chemical reaction effect is negligible (it is not possible to be 
measured experimentally). 



In the cases, when the interphase mass transfer is a result of the chemical reaction in the 

liquid phase (
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1 11 12
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1, 1 Pe .

Z Z

Z
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Z Z

CC U R
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−

=

∂ ∂   = ≡ ≡ − ≡ ≡   ∂ ∂   
∂ ≡ ≡ −  ∂   

In the cases of very fast chemical reactions (

0
222

0
11

Da 10
c
c
c
≥

) from (2.1.14) is possible to obtain 
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ε
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CZ C U R
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−

=
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−

=

∂ ∂
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∂ ∂
∂ = ≡ ≡ −  ∂ 

∂ = ≡ ≡ ∂ 
∂ = ≡ ≡ −  ∂   (0.1.17) 

For big values of the average velocities 
20 Fo 10 , 1,2,3s s−= ≤ =  from (2.1.14) follows the 

convective type model 



 

( ) ( )

( ) ( )

( )

11
1 0 11 12

0 0
12 1 22

2 0 11 12 12 220 0
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22
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12

;

Da ;

Da ;
0, 1, 11,22; 0, 0.s
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dC u cU R K C C C C
dZ u c

dCU R C C
dZ

Z C s Z C

c c
= − −

= − −

= −
= ≡ = = ≡  (0.1.18) 

The concentration distribution in the chemical absorption case will be obtained for high 
columns, where the parameter ε  in (2.1.14) is very small ( 20 10ε −= ≤ ). The velocity 
distributions in the phases will be Poiseuille type and the difference between the velocities 
of the phases will be in the average velocities only: 
 

2
1 2 2 2 .U U R= = −  (0.1.19) 

As a result, the problem (2.1.14) takes the form: 
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11 12 22
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=

= ≡ ≡ ≡  (0.1.20) 
The solution of (2.1.20) is obtained in the case 11 12 22Fo Fo Fo 0.1,= = =  

0 0
1 22

0 0 0
2 11

Da 1, 1, 2
u cK
u c
c c

= = = =
 and the results are presented on Figs. 3.1 and 3.2. 

In the chemical absorption case the model (2.1.14) permits to obtain (similar to (2.1.17)) 
the inter-phase mass transfer resistance distribution between the gas and liquid phases: 

 

0 0
1 11

1 2 0 1 0 0 0
2 22

0
1 2 1 2

0 0

, , ,
Da

11, , ,
1 1

u cK
u c

ρ ρ ρ ρ ρ

ρ
ρ ρ ρ ρ

ρ ρ

= = =

+ = = =
+ +  (0.1.21) 

where the parameters 1ρ  and 2ρ  can be considered as mass transfer resistances in the gas 
and liquid phases. Very often the big values of Da  lead to small values of 0ρ  and as a result 

1 2ρ ρ , i.e. the gas is the limiting phase and the optimal organization of the absorption 
process is the absorption in gas-liquid drops systems. 



 
Fig. 3.1 Concentration distribution C11(R,Z): (1) - Z=0.2; (2) - Z=0.4; (3) – Z = 0.8; (4) – Z 
= 1 

 
Fig. 3.2 Concentration distribution C22(R,Z): (1) - Z = 0.2; (2) – Z = 0.4; (3) - Z = 0.8; (4) – 
Z = 1 
 
 
 
The theoretical procedure (II.5–II.15) presented in Part II will be used for the creation of 
average concentration models of absorption, adsorption and catalytic processes in two-
phase systems. 
The convection-diffusion model of the two-phase systems [1–3] has the form (3.0.1): 



 

( )
2 2

2 2

0

0 0 0 0

0

0

1 ;

0, 0; , 0;

0, , ;

1, 2,..., ; 1, 2 1,3 2,3.
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i i j
=
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∂ ∂

 ∂
= ≡ ≡ −   ∂ 

= = = =  (0.1.22) 
The average values of the velocities and concentrations at the column cross-sectional area 
in two phase systems follow from (II.3): 

 

( ) ( ) ( )
0 0

2 2
0 00 0

0

2 2, , ,

1, 2,..., , 1, 2 1,3 2,3.

r r

j j ij iju ru r dr c z rc r z dr
r r

i i j

= =

= = = =

∫ ∫

 (0.1.23) 

The functions ( ) ( ), ,j iju r c r z  in (6.0.1) can be presented by the average functions (6.0.2): 

 

( ) ( ) ( ) ( ) ( )
0

, , , ,

1, 2,..., , 1, 2 1,3 2,3,
j j j ij ij iju r u u r c r z c z c r z

i i j
= =

= = = =

 

 (0.1.24) 
where ( )ju r  and ( ),ijc r z  present the radial non-uniformity of the velocity and concentration 
and satisfy the conditions 

( ) ( )
0 0

02 2
0 00 0

2 21, , 1, 1, 2,..., , 1, 2 1,3 2,3.
r r

j ijru r dr rc r z dr i i j
r r

= = = = = =∫ ∫ 

 (0.1.25) 
The average concentration model may be obtained when putting (6.0.3) into (6.0.1), 

multiplying by r and integrating over r in the interval [ ]00, r . As a result, the average 
concentration model has the form: 
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 (0.1.26) 
where 
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0
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0 0

2  ,  , 1, 2,..., , 1, 2 1,3 2,3.
r

ij j ijz r u r c r z dr i i j
r

α = = = = =∫  

 (0.1.27) 
1 Absorption processes modeling 
1.1 Physical absorption 
The convection-diffusion model of the physical absorption ( 0 1i =  and the substance index i  
is possible to be ignored, 1,2j = ) in a counter-current column [4, 5] has the form (3.1.2, 
3.1.3): 
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,
=  (0.2.1) 

where 1 2z z l+ =  ( l  is the column active zone height in the co-current column 1 2z z z= = ) 
and 

0
2 0c = , practically. 

The use of the averaging procedure (6.0.1)–(6.0.5) leads to the average concentration model 
of the physical absorption: 
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where 
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α = =∫  

 (0.2.3) 
For a theoretical analysis of the physical absorption the following dimensionless 
(generalized) variables have to be used: 

 
1 2 1 2

1 2 1 20 0
1 1

, , , .
z z c cZ Z C C
l l c c

c
= = = =

 (0.2.4) 
If (6.1.4) is put into (6.1.2) the model in generalized variables takes the form: 
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where  
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0Pe , , 1, 2.j j
j j

j j

u l k l
K j

D u
χ −= = =

 (0.2.6) 
From (6.0.2), (6.0.3), (6.0.6), (6.1.3) and (6.1.4) follow the expressions: 
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As an example will be considered the case of parabolic velocity distribution (Poiseuille 
flow), where the difference between the phase velocities lies in the average velocities only: 
 

2
1 2 2 2 .U U R= = −  (0.2.8) 

The solution of the model equations (2.1.8) for a high column (
20 10 ,ε −= ≤  

1 20 Pe Fo 10j je− −= = ≤  for 1 2 01Fo 1, 1, 2, Fo 0.1, Fo 0.01, 1,j j K≤ = = = =  02 0.1K = ), using the 
iterative algorithm [5] in Chapter 8 and (6.1.7) permits to obtain the average concentrations 

( )j jC Z  (Figs. 6.1 and 6.2) and the functions ( ) 1,2j jA Z j =  (Figs. 6.3 and 6.4). 
The functions ( ), 1, 2j jA Z j= =  presented on Figs. 6.3 and 6.4 show that linear 
approximations are possible to be used: 
 0 1 , 1, 2.j j j jA a a Z j= + =  (0.2.9) 
The obtained (“theoretical”) parameters’ values are presented in Table 6.1. 
In the case of high columns (

1Pe 0j e− = = ) the average concentration model of a counter-
current physical absorption process has the form: 

 

( ) ( ) ( )

( ) ( ) ( )

1
01 11 1 11 1 01 1 2 1 1

1

2
02 12 2 12 2 02 1 2 2 2

2

; 0,   C 0 1.

; 0,   C 0 0.

d Ca a Z a C K C C Z
dZ
d Ca a Z a C K C C Z
dZ

+ + = − − = =

+ + = − = =
 (0.2.10) 

The obtained average concentrations ( ) , 1, 2j jC Z j =  (Figs. 6.1 and 6.2) permit to obtained 
“artificial experimental data” for different values of , 1, 2 :jZ j =  

 

( ) ( ) ( )jexp 1 0.95 0.1 , 1,...,10,

0.1 , 1,2,...,10, 1,2,

m
j n m j jn

jn

C Z S C Z m

Z n n j

= + =

= = =  (0.2.11) 

 
Fig. 6.1 Average concentration ( )1 1C Z  for 1 2 01 02Fo 0.1, Fo 0.01, 1, 0.1K K= = = =  



 
Fig. 6.2 Average concentration ( )2 2C Z  for 1 2 01 02Fo 0.1, Fo 0.01, 1, 0.1K K= = = =  

 
Fig. 6.3 Function ( )1 1A Z  for 1 2 01 02Fo 0.1, Fo 0.01, 1, 0.1K K= = = =  



 
Fig. 6.4 Function ( )2 2A Z  for 1 2 01 02Fo 0.1, Fo 0.01, 1, 0.1K K= = = =  

 
Fig. 6.5 Comparison of concentration distributions (6.1.10): (1)- ( )1 1 1

1 1 01 11, , ;C Z a a  
(2)- ( )2 2 2

1 1 01 11, , ;C Z a a  (3)- ( )0 0 0
1 1 01 11, , ;C Z a a  ○ - “artificial experimental data” (6.1.11). 



 
Fig. 6.6 Comparison of concentration distributions (6.1.10): (1)- ( )1 1 1

2 2 02 12, , ;C Z a a  

(2)- ( )2 2 2
2 2 02 12, , ;C Z a a  (3)- ( )0 0 0

2 2 02 12, , ;C Z a a  ○ - “artificial experimental data” (6.1.11). 
Table 6.1 
Parameters values 
of ( ) , 1,2jA Z j =  for 

1 2Fo 0.1, Fo 0.01,= =

01 021, 0.1K K= =  
where 
0 1, 1,...,10mS m≤ ≤ =  
are obtained by means of a generator of random numbers. The obtained “artificial 
experimental data” (6.1.11) are used as illustration of the parameter identification in the 
average concentrations models (6.1.10) by minimization of the least-squares functions 

, 1, 2,...,10nQ n =  and Q: 

( ) ( ) ( )

( ) ( )

( ) ( )

10 2

01 11 02 12 1 1 01 11 1exp 1
1

10 2

2 2 02 12 2exp 2 1 2
1

10
0 0 0 0 0 0 0 0
01 11 02 12 01 11 02 12

1

, , , , , ,

, , , 0.1 , 1, 2;

, , , , , , , ,

n n n n n n m
n n n n

m
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n n
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Q Z a a a a C Z a a C Z

C Z a a C Z Z Z Z n n

Q a a a a Q Z a a a a

=

=

=

 = − + 

 + − = = = = 

=

∑

∑

∑
 (0.2.12) 

where the values of ( )01 11 02 12, , , ,n n n n
j jnC Z a a a a  are obtained as solutions of (6.1.10) for different 

0.1 , 1,2,...,10, 1,2jnZ n n j= = = . The obtained (“experimental”) values 
( ) ( )0 0 0 0 1 1 1 1

01 11 02 12 01 11 02 12, , , , , , ,a a a a a a a a  and ( )2 2 2 2
01 11 02 12, , ,a a a a  are presented in Table 6.1. They are used 

for the calculation of the functions ( )0 0 0
1 1 01 11, ,C Z a a , ( ) ( )1 1 1 2 2 2

1 1 01 11 1 1 01 11, , , , , ,C Z a a C Z a a  (the lines in 

Fig. 6.5) and ( )0 0 0
2 2 02 12, ,C Z a a , ( ) ( )1 1 1 2 2 2

2 2 02 12 2 2 02 12, , , , , ,C Z a a C Z a a  (the lines in Fig. 6.6). The points 
in Figs. 6.5 and 6.6 are the “artificial experimental data” (6.1.11). 

“Theoretical” 
values 

“Experimental” values 

01 1.0316a =  
0
01 1.2242a =  

1
01 0.9264a =  

2
01 0.8888a =  

11 0.1225a =  
0
11 0.4759a =  

1
11 0.1564a =  

2
11 0.0798a =  

02 0.6664a =  
0
02 0.7191a =  

1
02 0.5863a =  

2
02 0.6021a =  

12 0.1036a =  
0
12 0.0223a =  

1
12 0.1096a =  

2
12 0.1289a =  



The comparison of the functions (lines) and “artificial experimental data” (points) in Figs. 
6.5 and 6.6 shows that the experimental data obtained from the column with real radius and 
small height ( 0.1, 1,2jZ j= = ) are useful for the parameters identification. 
1.2 Chemical absorption 
The chemical absorption ( 0 2i = ) is a result of the chemical reaction between the absorbed 
substance in the liquid phase ( 1, 2i j= = ) and a reagent in the liquid phase ( 2i j= = ). If the 
kinetic model of the chemical reaction is 12 22k c c , the convection-diffusion model of the 
chemical absorption in a co-current column has the form (3.1.11, 3.1.12): 
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where 

0 0, , 1, 2, 1, 2,j iju c i j= =  are the inlet velocities and concentrations in the gas and liquid 
phases (

0
12 0c = , practically). 

From (II.3) follow the average values of the velocity and concentration in (6.1.13) at the 
column cross-sectional area: 
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 (0.2.14) 

The functions in (6.1.13) can be presented by the average functions (6.1.14): 
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where 
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 (0.2.16) 
The use of the averaging procedure (6.0.1)–(6.0.5) leads to the average concentration model 
of the chemical absorption: 
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where 
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0 0

0 0

11 1 11 12 2 122 2
0 00 0

22 2 22 12 222 2
0 00 0

2 2 , ,  , ,

2 2 , ,  , , .

r r

r r

z r u r c r z dr z r u r c r z dr
r r

z r u r c r z dr z r c r z c r z dr
r r

α α

α d

= =

= =

∫ ∫

∫ ∫

   

   

 (0.2.18) 
The use of dimensionless (generalized) variables 

 
11 12 22

11 12 220 0 0
11 11 22

, , , .
c c czZ C C C

l c c c
c

= = = =
 (0.2.19) 

leads to 

 

( )

( )

2
111 11 11

11 11 11 01 11 122

2
1 012 12 12

12 12 12 02 11 12 22 12 222

Pe ;

Pe ;

dC dA d CA C K C C
dZ dZ dZ

dC dA d CA C K C C Kc C C
dZ dZ dZ

−

−

+ = − −

+ = + − − ∆
 (0.2.20) 

 

2 0
122 22 22 11

22 22 22 12 222

11 12 22

11 12 22

0 0 0

Pe ;

0, 1, 0, 1,

0, 0, 0;
Z Z Z

dC dA d C cA C K C C
dZ dZ dZ

Z C C C

dC dC dC
dZ dZ dZ

c
−

= = =

+ + = − ∆

= = = =

     
= = =     

       
where 

 

1 2 2
11 12 22

11 12 22

10
0

2

Pe , Pe , Pe ,

, 1, 2, .j
j

j

u l u l u l
D D D
k l klK j K
u u

χ −

= = =

= = =
 (0.2.21) 

From (6.0.2), (6.0.3), (6.0.6), (6.1.3) and (6.1.4) for the co-current flows 1 2( )z z z= =  follow 
the expressions 



( ) ( )
( )

( )
( ) ( ) ( )

( ) ( )
( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( )
( )

1
1 0 1

1 1 1
1 1 0

1
22 0 22

22 22 22
22 22 0

1
1

1 1 1
10

1
12 22

12 220

, ,
, , 2 , Z , 1,2,

, ,
, , 2 , Z ,

,
2 , 1, 2,

, ,
2 .

j j
j j j

j j

j
j j j j

j

c r R lZ C R Z
c r z C Z RC R dR j

c lZ C Z

c r R lZ C R Z
c r z C Z RC R dR

c lZ C Z

C R Z
z lZ A Z RU R dR j

C Z

C R Z C R Z
z lZ Z R dR

C Z C Z

α α

d d

= = = =

= = =

= = = =

= = ∆ =

∫

∫

∫

∫





 (0.2.22) 
A practical case leads to has the following orders of magnitude of the model parameters in 
(4.1.14): 

 

0
11

0 01

0 0 0
1 1 22

02 0 0 0 0
2 2 11

Fo 0.1, 11,12,22, 1, Da 1,

1, 1, 2.

s
cs K K K

u u cK K
u u c

c
c c c

= = = = = =

= = = =
 (0.2.23) 

 
Fig. 6.7 Function A11(Z) 



 
Fig. 6.8 Function A12(Z) 

 
Fig. 6.9 Function Δ(Z) 
The use of the parameter values (6.1.23) for solution of the model equations (3.1.20) 

permits to be obtained the functions ( ) ( ) ( )11 12 22, , , , ,C R Z C R Z C R Z  and after that the functions 
( ) ( ) ( )11 12 22, ,C Z C Z C Z , ( ) ( ) ( )11 12, ,A Z A Z Z∆  in (6.1.22) (Figs. 6.7–6.9), where 

22 2 , 1,2jU R j= − = . From the Figs. 6.7–6.9 it is seen that the functions ( ) ( ) ( )11 12, ,A Z A Z Z∆  
can be presented as linear approximations 

 ( ) ( ) ( )11 110 111 12 120 121 0 1Z, Z,A Z a a A Z a a Z Zδδ = + = + ∆ = +  (0.2.24) 
with the approximations parameters being 



110 111 120 121 0 11.04, 0.05, 1.07, 0.08, 1.01, 0.03.a a a a δδ = = = = = =  (0.2.25) 
From (6.1.25) it is seen that the maximal effect of the velocity non-uniformity on the 
function ( )Z∆  is about 4 % and cannot be registered experimentally, i.e. ( ) 1Z∆ ≡ . 
The parameters identification in (6.1.24) is possible to be realized similar to the case of the 
physical absorption. 
 
 
 
 
2. Adsorption processes 
In the adsorption process [7–10] participate two reagents ( 0 2i = ), where the first is in the 
gas or liquid phase ( 1, 1,2i j= = ) and the second is in the solid phase ( 2, 3i j= = ). The 
adsorption is the process of mass transfer of an active component (the substance, which is 
possible to be adsorbed) from the gas (liquid) volume to the solid interface due to a 
physical (Van der Vaals’s) or chemical (valence) force [1]. The rate of the adsorption 
process determines analogically the chemical reaction rates, where law of mass action is 
changed by the law of surface action. 
The convection-diffusion type models of the adsorption processes in the gas (liquid)-solid 
systems are possible to be obtained from (2.0.1) if 1,3 2,3j = =  ( 1 3 2 31 ε ε ε ε= + = + ), 0 2i = , 
where 1i =  is the active component (AC) in the gas (liquid) phase, 2i =  - the active sites 
(AS) in the adsorbent (solid phase). The volume adsorption rate in the case of a solid 

adsorbent is 3 0 03Q b Q=  [kg-mol.m−3.s−1], where 
2 3

0 m .mb −    is m2 of the inner surface in the 
solid phase (the surface of the capillaries in the solid phase) in 1 m3 of the solid phase 

(adsorbent), 
1

03
2kg- mol.m .sQ --     − the surface adsorption rate. A gas adsorption will be 

considered for convenience, where 11c  [kg-mol.m−3] is the volume concentration of the AC 
in the gas phase (elementary) volume, 13c  [kg-mol.m−3] − the volume concentration of the 
AC in the void volume of the solid phase (adsorbent), 23c  [kg-eq.m−3] − the volume 
concentration of the AS in the solid phase (elementary) volume (1 kg-eq AS in the 

adsorbent combine 1 kg-mol AC), 1 31 ε ε= + , ( )1 1u u r=  – velocity of the gas phase [m.s−1], 
3 0u =  (solid phase is immobile). All concentrations are in kg-mol (kg-eq) in 1 m3 of the 

phase (elementary) volume. The inlet gas velocity in the column is 
0 2
1 1 1 0u F rε π= , where 0r  is 

the column radius [m] and 1F  − the gas phase flow rates [m3.s-1]. The average velocities 1u  
of the gas phases in the column are supposed to be equal to the inlet gas velocity in the 
column. 
2.1 Physical adsorption 
In the cases of physical adsorption on a solid surface [7] the adsorption rate is proportional 
to the surface concentration of the free AS (which may be associated with the molecules of 
the AC) and the volume concentration of the AC: 

 
1
0 1 13 1 ,Q k c Γ

Γ∞

 
= − 

   (0.3.1) 



where 1k  [m.s−1] is the adsorption rate constant, Γ  [kg-eq.m−2] − the surface concentration 
of the AS, which is linked to the molecules of the AC (the surface concentration of the 
adsorbed AC), Γ∞  [kg-eq.m−2] – the maximal surface concentration of the free AS. The 
surface concentration of the free AS is ( )Γ Γ∞ − . 
The physical adsorption process is reversible and the desorption rate could be obtained by 
analogical consideration, represented as: 
 

2
0 2 ,Q k Γ=  (0.3.2) 

where 2k  [s−1] is the desorption rate constant. The resultant adsorption rate is 

 
1 2

03 0 0 1 13 21 .Q Q Q k c kΓ Γ
Γ∞

 
= − = − − 

   (0.3.3) 
The volume concentration of the free AS in the solid phase (adsorbent) 23c  and its 
maximum value 

0
23c  [kg-eq.m−3] are possible to be obtained immediately: 

 ( ) 0
23 23,c b c bΓ Γ Γ∞ ∞= − =  (0.3.4) 

and from (2.2.3) and (2.2.4) follows the expression for the surface adsorption rate: 

 
( )

0
23 23

03 1 13 23 2 23 23 0
0 23

1 , .
c c

Q k c C k C C
b c

= − − =
 (0.3.5) 

Let us consider a non-stationary gas adsorption in a column apparatus, where the solid 
phase (adsorbent) is immobile. The convection-diffusion model of this process is possible 
to be obtained from (2.0.1), where the diffusivity of the free AS in the solid phase 
(adsorbent) volume is equal to zero. If the rate of the interphase mass transfer of the AC 

from the gas phase to the solid phase is ( )0 11 13k c c−  and the process is non- stationary as a 
result of the free AS concentration decrease, i.e. the convection-diffusion model has the 
form: 

 

( )

( )

2 2
11 11 11 11 11

1 11 0 11 132 2

013 23 23
0 11 13 0 1 13 2 230 0

23 23

1 ;

1 ;

c c c c cu D k c c
t z r rz r

dc c c
k c c b k c k c

dt c c

 ∂ ∂ ∂ ∂ ∂
+ = + + − − ∂ ∂ ∂∂ ∂ 

 
= − − + − 

   (0.3.6) 

 
023 23 23

0 1 13 2 230 0
23 23

1 ;
dc c c

b k c k c
dt c c

 
= − + − 

   
where t  is the time, 11D  is the diffusivity of the AC in the gas phase and 0k  is the inter-
phase mass transfer coefficient [s-1]. In (2.2.6) ( )11 11 , ,c c t r z=  and ( ),r z  are parameters in 

( )13 13 , ,c c t r z=  and ( )23 23 , ,c c t r z= . The concentration of the adsorbed AC is ( )0
23 23c c− . 

The model (2.2.6) represents the decrease of the concentration of the AC (free AS) in the 
part of the elementary volume 1ε  ( 3ε ) due to the physical adsorption. 
Let us consider an adsorption column with a radius 0r  and a height of the active volume l . 
The boundary conditions of (2.2.6) have the form: 



( )

0 0 11 11
11 11 13 23 23 0

0 0 0 0 11
11 11 1 11 1 11 11

0

0, , 0, ; 0, 0; , 0;

0, , ;
z

c ct c c c c c r r r
r r

cz c c u c u r c D
z =

∂ ∂
= ≡ ≡ ≡ = ≡ = ≡

∂ ∂
∂ = ≡ ≡ −  ∂   (0.3.7) 

where 
0
1u  is the inlet (average) velocity of the gas phase. 

The use of dimensionless (generalized) variables [1] permit a qualitative analysis of the 
model (2.2.6), (2.2.7) to be made, where as characteristic scales are used the average 
velocity, the inlet concentrations, the characteristic time 0t  (s) and the column parameters (

0 ,r l ): 
13 231 11

11 13 230 0 0 0 0
0 1 11 11 23

, , , , , .
c cu ct r zT R Z U C C C

r ht u c c c
= = = = = = =

 (0.3.8) 
If (2.2.8) is put in (2.2.6), (2.2.7), the model in generalized variables takes the form: 

( ) ( )

( ) ( )

( )

( )

2 2
11 11 11 11 11

0 11 132 2

0
13 23

3 1 1 13 23 2 230
11

0
23 11

1 13 23 2 230
23

11 11
11 13 23

11

1Fo ;

1 ;

1 ;

0, 1, C 0, 1; 0, 0; 1, 0;

0, 1, 1 Pe

C C C C CU R K C C
T Z R RZ R

dC c
K C C K C C K C

dT c
dC cK C C K C
dT c

C CT C C R R
R R

Z C U R

γ e
 ∂ ∂ ∂ ∂ ∂

+ = + + − − ∂ ∂ ∂∂ ∂ 

= − − + −

= − + −

∂ ∂
= ≡ ≡ ≡ = ≡ = ≡

∂ ∂

= ≡ ≡ − 1 11

0

,
Z

C
Z

−

=

∂ 
 ∂   (0.3.9) 

where ( ),R Z  are parameters in ( )13 , ,C T R Z , ( )23 , ,C T R Z  and 

 

20
011 1

0 2 0 0 2
111 0 1

0 0 00
0 1 1 0 2 2 3 00

1

Fo , Pe , , ,

, , .

rD l u l l
Du r u t l

k l
K K k t b K k t K k t

u

γ e= = = =

= = = =
 (0.3.10) 

Practically for long duration processes 
20 10γ −≤ ≤  and the problem (2.2.9) has the form: 

 

( ) ( )

( ) ( )

( )

( )

2 2
11 11 11 11

0 11 132 2

0
13 23

3 11 13 1 13 23 2 230
11

0
23 11

1 13 23 2 230
23

13 23

11 11

1 11
11

1Fo ;

1 ;

1 ;

0, C 0, 1;

0, 0; 1, 0;

0, 1, 1 Pe

C C C CU R K C C
Z R RZ R

dC c
K C C K C C K C

dT c
dC cK C C K C
dT c

T C
C CR R
R R

CZ C U R
Z

e

−

 ∂ ∂ ∂ ∂
= + + − − ∂ ∂∂ ∂ 

= − − + −

= − + −

= ≡ ≡

∂ ∂
= ≡ = ≡

∂ ∂
∂= ≡ ≡ −  ∂ 0

,
Z =



  (0.3.11) 

where T  is a parameter in ( )11 , ,C T R Z . 



For big gas velocity 20 Fo 10−= ≤ , 
20 10γ −= ≤  and from (2.2.9) follows the convection type 

model 

 

( ) ( )

( ) ( )

( )

11
0 11 13

0
13 23

3 11 13 1 13 23 2 230
11

0
23 11

1 13 23 2 230
23

13 23

;

1 ;

1 ;

0, C 0, 1; 0, 1.

dCU R K C C
dZ

dC c
K C C K C C K C

dT c
dC cK C C K C
dT c

T C Z C

= − −

= − − + −

= − + −

= ≡ ≡ = ≡  (0.3.12) 
In the cases of high columns ( 20 10ε −= ≤ ) the problem (2.2.11) has to be solved in zero 
approximation with respect to ε  (

10, Pe Fo 0ee −= = = ): 

 

( ) ( )
2

11 11 11
0 11 132

11 11
11

1Fo ;

0, 0; 1, 0; 0, 1.

C C CU R K C C
Z R R R

C CR R Z C
R R

 ∂ ∂ ∂
= + − − ∂ ∂ ∂ 

∂ ∂
= ≡ = ≡ = ≡

∂ ∂  (0.3.13) 

( ) ( )
0

13 23
3 11 13 1 13 23 2 23 130

11

1 ; 0, C 0.
dC c

K C C K C C K C T
dT c

= − − + − = ≡
 (0.3.14) 

( )
0

23 11
1 13 23 2 23 230

23

1 ; 0, 1.
dC cK C C K C T C
dT c

= − + − = ≡
 (0.3.15) 

The solution of the model equations (2.2.13), (2.2.14), (2.2.15),  using a multi-step 
algorithm (see Chap. 9 and [10]) is obtained in the case of parabolic velocity distribution 
(Poiseuille flow) in the gas phase ( ) 22 2U R R= −  and the parameters values 

1 0
0 1 3 23Fo 10 , 1K K K c−= = = = = , 

3 0 2
2 1110 , 10K c− −= = . The concentration distributions 

( )11 0.6, ,C R Z  and ( )11 ,0.2,C T Z , for different T  and Z , are presented in Figs. 3.3 and 3.4. 
2.2 Chemical adsorption 
The presence of chemical bonds between the AC and AS at the solid surface leads to the 
next expression [1] for the adsorption rate: 

 
1

( )

0 0
1 1

exp( / ) ,

m

t s
s i s

m n m

s i
s i

Q k E RT z p z
α

α β =

−

= =

∑
= − ∏ ∏

 (0.3.16) 
where sz  is the part of the face interphase occupied by the molecules of the substances sA  
(s = 1,…,m), ip − the partial pressures (volume concentrations) of the substances (iB i = 
1,…,n) in the gas (liquid), 0z − the part of the free surface, which is able to realize physical 
bonds with the molecules of the substances ( 1,..., ),iB j n=  tm − the number of the AS at the 
interface, which realize the physical bonds. 
In (2.2.16) it is assumed that the molecules ( 1,..., )sA s m=  from the solid surface react 
chemically with a part of the molecules ( 1,..., )iB i n= , while the other part realize physical 
bonds with the active places .tm  The heterogeneous reaction rate and the reactions orders 
are ,Q ( 1,..., )s s mα =  and ( 1,..., ).i i nβ =  



 
Fig.3.3 Concentration distributions C11(0.6,R,Z): (1)Z=0.2; (2)Z=0.4; (3)Z=0.6; (4)Z=0.8; 
(5)Z=1 

 
Fig.3.4 Concentration distributions C11(T,R,0.2): (1)T=0.2; (2)T=0.4; (3)T=0.6; (4)T=0.8; 
(5)T=1 
In the cases of reversible heterogeneous chemical reactions the equation of adsorption rate 
follows from (2.2.3) and (2.2.16) 

 piQ k= 11

/ 1 ,
n n

i pi i
ii

c k c
==

 
+ 

 
∑∏

 (0.3.17) 
where pik  are the equilibrium constants of the reagents ( 1,..., ).iB i n=  



All equations of the adsorption kinetics [1] are based on the ideal adsorption layer model. 
Practically the main part of the adsorption processes are related with real adsorption layers, 
i.e. the adsorbent surfaces are non-homogeneous as a result of the changes of the solid 
phase structure. 
The convection-diffusion model of the chemical adsorption [7] is possible to be obtained on 
the basis of the two-phase processes model (2.0.1), where 1ε  and 3ε  are the parts of the gas 

phase and sorbent particles (solid) phase ( )1 3 1ε ε+ =  of the medium elementary volume in 
the column apparatus, where the solid phase is immobile ( 3 0u = ). The volume 
concentrations of the AC in the gas phase and in the void volume of the solid phase 
(adsorbent) are 11c  and 13c  [kg-mol.m–3]. For the interphase (gas-solid) mass transfer rate it 

is possible to use ( )0 11 13k c c− , where 0k  is the interphase mass transfer coefficient. The 
adsorption rate in the solid phase (similar to two components chemical reaction) is 
presented as 13 23kc c , where 23c  [kg-eq.m–3] is the volume concentration of the (AS) in the 
solid phase (particles volume), k − the chemical reaction rate constant (1 kg-eq AS in the 
adsorbent combine chemically 1 kg-mol AC in gas phase). All concentrations are in kg-mol 
(kg-eq) in 1 m3 of the phase (elementary) volume. 
The diffusivity of the AC in the mobile gas phase is 11D . The convective transport of AC 
and AS in the solid phase is not possible. The diffusion mass transfer of AC in the solid 
phase (Knudsen diffusion) can be neglected due to the small value of the Knudsen 
diffusivity. The diffusivity of the AS in the adsorbent phase (particles volume) is equal to 
zero, too. 
If the process is non-stationary as a result of the free AS concentration decrease, the 
convection-diffusion model of the chemical adsorption has the form: 

 

( )

( )

2 2
11 11 11 11 11

1 11 0 11 132 2

13 23
0 11 13 13 23 13 23

1 ,

0, .

c c c c cu D k c c
t z r rz r

dc dc
k c c k c c k c c

dt dt

 ∂ ∂ ∂ ∂ ∂
+ = + + − − ∂ ∂ ∂∂ ∂ 
= − − = = −

 (0.3.18) 
The initial and boundary conditions of (2.2.18) are: 
 

0 0
11 11 13 23 230, , 0, ;t c c c c c= ≡ ≡ ≡  (0.3.19) 

 
( )

11 11
0

0 0 0 0 11
11 11 1 11 1 11 11

0

0, 0; , 0;

0, , ,
z

c cr r r
r r

cz c c u c u r c D
z =

∂ ∂
= ≡ = ≡

∂ ∂
∂ = ≡ ≡ −  ∂   

where 
0 0
1 11,u c  are the inlet velocity and the concentration of the active component in the gas 

phase, 
0
23c − the initial concentration of AS in the solid phase. 

The using of dimensionless (generalized) variables 
13 231 11

11 13 230 0 0 0 0
0 1 11 11 23

, , , , , ,
c cu ct r zT R Z U C C C

r lt u c c c
= = = = = = =

 (0.3.20) 
leads to: 



( ) ( )
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2 2
11 11 11 11 11
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0 013 23
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T Z R RZ R

dC dC
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dT dT
T C C C

C CR R
R R

CZ C U R
Z

γ e

−

=

 ∂ ∂ ∂ ∂ ∂
+ = + + − − ∂ ∂ ∂∂ ∂ 

= − − = −

= ≡ ≡ ≡
∂ ∂

= ≡ = ≡
∂ ∂

∂ = ≡ ≡ −  ∂   (0.3.21) 

where ( ),R Z  are parameters in ( )13 , ,C T R Z , ( )23 , ,C T R Z  and 
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γ e  = = = =  
 

= = =
 (0.3.22) 

For lengthy processes it is possible to use the approximation 
20 10γ −= ≤ : 

 

( ) ( )

( )

2 2
11 11 11 11

0 11 132 2

0 013 23
3 11 13 23 13 23 11 13 23

1  ;  Fo

; ;

C C C CU R K C C
Z R RZ R

dC dC
K C C Kc C C Kc C C

dT dT

ε
 ∂ ∂ ∂ ∂

= + + − − ∂ ∂∂ ∂ 

= − − = −
 (0.3.23) 

 
( )

13 23

11 11

1 11
11

0

0, 0, 1;

0, 0; 1, 0;

0, 1, 1 Pe ;
Z Z

T C C
C CR R
R R

CZ C U R −

=

= ≡ ≡

∂ ∂
= ≡ = ≡

∂ ∂
∂ = ≡ ≡ −  ∂   

where T  is a parameter in ( )11 , ,C T R Z . 
In the cases of high columns ( 210ε −≤ ) the problem (2.2.21) has to be solved in zero 
approximation with respect to ε  ( 0ε = ): 

 

( ) ( )

( )
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11 11 11 11

0 11 132

0 013 23
3 11 13 23 13 23 11 13 23

11 13 23

11 11

11

1Fo

; ;

0, 1, 0, 1;

0, 0; 1, 0;

  ;

0, 1.

  
C C C CU R K C C
T Z R R R

dC dC
K C C Kc C C Kc C C

dT dT
T C C C

C CR R
R R

Z C

γ
 ∂ ∂ ∂ ∂

+ = + − − ∂ ∂ ∂ ∂ 

= − − = −

= ≡ ≡ ≡

∂ ∂
= ≡ = ≡

∂ ∂
= ≡  (0.3.24) 

For big gas velocity 20 Fo 10−= ≤ , 
20 10γ −= ≤  and from (2.2.23) follows the convection type 

model 

 

( ) ( )

( )

11
0 11 13

0 013 23
3 11 13 23 13 23 11 13 23

13 23 11

; ;

0, 0, 1;

  ;  

0, 1,

dCU R K C C
dZ

dC dC
K C C Kc C C Kc C C

dT dT
T C C Z C

= − −

= − − = −

= ≡ ≡ = ≡  (0.3.25) 



where T  is a parameter in ( )11 , ,C T R Z , while R  and Z  are parameters in ( )13 , ,C T R Z  and 
( )23 , ,C T Z R . 

 
 
 
 
2 Adsorption processes modeling 
2.1 Physical adsorption 
The convection-diffusion model of the non-stationary physical adsorption in the column 
apparatuses [6, 7] has the form (3.2.6, 3.2.7): 

( )

( )

2 2
11 11 11 11 11

1 11 0 11 132 2

013 23 23
0 11 13 0 1 13 2 230 0

23 23

023 23 23
0 1 13 2 230 0

23 23

0 0 11
11 11 13 23 23

1 ;

1 ;

1 ;

0, , 0, ; 0,

c c c c cu D k c c
t z r rz r

dc c c
k c c b k c k c

dt c c

dc c c
b k c k c

dt c c
ct c c c c c r
r

 ∂ ∂ ∂ ∂ ∂
+ = + + − − ∂ ∂ ∂∂ ∂ 

 
= − − + − 

 
 

= − + − 
 

∂
= ≡ ≡ ≡ = ≡

∂

( )

11
0

0 0 0 0 11
11 11 1 11 1 11 11

0

0; , 0;

0, , .
z

cr r
r

cz c c u c u r c D
z =

∂
= ≡

∂
∂ = ≡ ≡ −  ∂   (0.4.1) 

From (II.3) follow the average values of the velocity and concentration functions in (6.2.1) 
at the column cross-sectional area: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

1 1 11 112 2
0 00 0

13 13 23 232 2
0 00 0

2 2, , ,

2 2, , , .

r r

r r

u ru r dr c z rc r z dr
r r

c z rc r z dr c z rc r z dr
r r

= =

= =

∫ ∫

∫ ∫
 (0.4.2) 

The functions in (6.2.1) can be presented by the average functions (6.2.2): 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 11 11 11

13 13 13 23 23 23

, , , , , , ,

, , , , , , , , , , , ,

u r u u r c t r z c t z c t r z

c t r z c t z c t r z c t r z c t z c t r z

= =

= =

 

   (0.4.3) 
where 

 
( ) ( )

0 0

1 112 2
0 00 0

2 21, , , 1,
r r

ru r dr rc t r z dr
r r

= =∫ ∫ 

 (0.4.4) 

 
( ) ( )

0 0

13 232 2
0 00 0

2 2, , 1, , , 1.
r r

rc t r z dr rc t r z dr
r r

= =∫ ∫ 

 
The use of the averaging procedure (6.0.1)–(6.0.5) leads to the average concentration model 
of the physical adsorption: 



 

( )

( )

2
11 11 11

1 1 11 11 0 11 132

013 23 23
0 11 13 0 1 13 2 230 0

23 23

023 23 23
0 1 13 2 230 0

23 23

0 0 0 11
11 11 13 23 23 11 11

;

1 ;

1 ;

0, , 0, ; 0, ,

c c cu u c D k c c
t z z z

d c c c
k c c b k c k c

dt c c

d c c c
b k c k c

t c c

ct c c c c c z c c
z

αα

b

b

∂ ∂ ∂∂
+ + = − −

∂ ∂ ∂ ∂
 

= − − + − 
 

 
= − + − ∂  

∂= ≡ ≡ ≡ = ≡  ∂ 0

0.
z=

 ≡
  (0.4.5) 

where 

 

( ) ( ) ( )

( ) ( ) ( )

0

0

1 112
0 0

13 232
0 0

2, , , ,

2, , , , , .

r

r

t z ru r c t r z dr
r

t z rc t r z c t r z dr
r

α α

β β

= =

= =

∫

∫

 

 

 (0.4.6) 
The use of the generalized variables 

 
13 2311

11 13 230 0 0 0
11 11 23

, , , , ,
c cct zT Z C C C

lt c c c
= = = = =

 (0.4.7) 
leads to: 

 

( )

( ) ( )

( )

2
111 11 11

11 0 11 132

0
13 23

3 11 13 1 13 23 2 230
11

0
23 11

1 13 23 2 230
23

11
11 13 23 11

0

Pe ;

1 ;

1 ;

0, 1, 0, 1; 0, 1, 0,
Z

C C CAA C K C C
T Z Z Z

dC c
K C C BK C C K C

dT c
dC cBK C C K C
dT c

CT C C C Z C
Z

γ −

=

∂ ∂ ∂∂
+ + = − −

∂ ∂ ∂ ∂

= − − + −

= − + −

 ∂
= ≡ ≡ ≡ = ≡ ≡ ∂   (0.4.8) 

where 
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( )

( ) ( ) ( ) ( )
( )

( )
( )

( ) ( ) ( ) ( )

( ) ( )
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1
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1 1
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1
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, ,
, , , 2 ,

,
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, , , 2 ,

, ,

, 2 , , Z , , 2 , , Z ,

, 2 , , Z .

k l
K K k t b K k t K k t

u
C T R Z

A T Z t T lZ t z RU R dR
C T Z

C T R Z C T R Z
B T Z t T lZ t z R dR

C T Z C T Z

C T Z RC T R dR C T Z RC T R dR

C T Z RC T R dR

α α

bb

= = = =

= = =
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= =

=

∫

∫

∫ ∫

∫
 (0.4.9) 

In (6.2.8) Z  is a parameter in ( )13 ,C T Z , ( )23 ,C T Z  and T is a parameter in ( )11 ,C T Z . 
Practically, for lengthy (long-term) processes 

20 10γ −≤ ≤  and high columns (
2 1 20 10 , 0 Pe Fo 10ee − − −= ≤ = = ≤  for Fo 1≤ ) the problem (6.2.8) has the form: 



 

( )

( ) ( )

( )

11
11 0 11 13

0
13 23

3 11 13 1 13 23 2 230
11

0
23 11

1 13 23 2 230
23

11 13 23 11

;

1 ;

1 ;

0, 1, 0, 1; 0, 1.

dC dAA C K C C
dZ dZ

dC c
K C C BK C C K C

dT c
dC cBK C C K C
dT c

T C C C Z C

+ = − −

= − − + −

= − + −

= ≡ ≡ ≡ = ≡  (0.4.10) 
The solution of the model equations (3.2.11), using the multi-steps algorithm (see Chapter 9 
and [7]), for the case 

2 1 20 10 , 0 Pe Fo 10 ,ee − − −= ≤ = = ≤
1 0 3 0 2

0 1 3 23 2 1110 , 1, 10 , 10 ,Fo K K K c K c− − −= = = = = = =  permits to obtain the concentrations 
( ) ( ) ( )11 13 23, , , , , , , ,C T R Z C T R Z C T R Z  and the functions 
( ) ( ) ( ) ( ) ( )11 13 23, , , , , , , , ,C T Z C T Z C T Z A T Z B T Z  in (6.2.9). The results for ( ) ( ), , ,A T Z B T Z  

show that ( ), 1B T Z ≡  and ( ),A T Z is possible to be presented as a linear approximation: 
 0 .z tA a a Z a T= + +  (0.4.11) 

 
Fig. 6.10 Function A(T,Z): (1) Z = 0.2; (2) Z = 0.4; (3) Z = 0.6; (4) Z = 0.8; (5) Z = 1.0 



 
Fig. 611 Function A(T,Z): (1) T = 0.2; (2) T = 0.4; (3) T = 0.6; (4) T = 0.8; (5) T = 1.0 

 
Fig. 6.12 Function ( )11 ,C T Z  in (6.2.9): (1) T = 0.2; (2) T = 0.4; (3) T = 0.6; (4) T = 0.8; (5) T 
= 1.0; Dotted lines are solution of (6.2.10) 



 
Fig. 6.13 Function ( )11 ,C T Z  in (6.2.9): (1) Z = 0.2; (2) Z = 0.4; (3) Z = 0.6; (4) Z = 0.8; (5) Z 
= 1.0; Dotted lines are solution of (6.2.10) 
The obtained (“theoretical”) parameters values are 0 1.0471, 0.09025,za a= = 0.03770ta = −  (see 

Table 5.2). The functions ( ) ( )11 , , ,C T Z A T Z  are presented in Figs. 6.10–6.13. 
In the Figs. 6.12 and 5.13 are compared the function ( )11 ,C T Z obtained in (6.2.9) (the lines) 

and the function ( )11 ,C T Z obtained as a solution of the (6.2.10) (the dotted lines), where 
0 3 0 2

0 1 3 23 2 111, 10 , 10K K K c K c− −= = = = = =  and 1.047 0.0902 0.0377 , 1.A Z T B= + − =  
The concentration ( )11 0.6, ,C R Z  obtained as a solution of the problem (3.2.13) – (3.2.15) for 
the case 

1 0 3 0 2
0 1 3 23 2 11Fo 10 , 1, 10 , 10K K K c K c− − −= = = = = = =  permits to be obtained the average 

concentration ( )11 0.6,C Z in (6.2.9) and “artificial experimental data” for different values of 
Z: 

 

( ) ( ) ( )exp 110.95 0.1 0.6, ,

1,...10, 0.1 , 1,2,...,10,

m
n m n

n

C Z S C Z
m Z n n

= +

= = =  (0.4.12) 
where 0 1, 1,...,10mS m≤ ≤ =  are obtained by means of a generator of random numbers. The 
obtained “artificial experimental” data (6.2.12) are used for the illustration of the parameter 
identification in the average concentrations models (6.2.10) by minimization of the least-
squares functions nQ  and Q : 

 

( ) ( ) ( )

( ) ( )

10 2

0 11 0 exp
1

10

0 0
1

Z , , , 0.6, , , , ,

0.1 , 1, 2,...,10; , , , , , ,

m
n n z t n z t n

m

n z t n n z t
n

Q a a a C Z a a a C Z

Z n n Q a a a Q Z a a a

=

=

 = − 

= = =

∑

∑
 (0.4.13) 

where the values of ( )11 00.6, , , ,n z tC Z a a a  are obtained as solutions of (6.2.10) for different 
0.1 , 1,2,...,10nZ n n= = . 



The obtained (“experimental”) values of 0 , ,z ta a a  by minimization of 1 2 3, , ,Q Q Q Q  are 
presented in the Table 6.2. 

Table 6.2 
On Fig. 6.14 are compared the average concentration ( )11C Z  (the lines) as a solution of 
(6.2.10) for the parameters values 0 , ,z ta a a  obtained by the minimization of 1Q  and Q  in 
(5.2.13) with the “artificial experimental data” (6.2.12) (the points). The result presented 
shows that the parameters identification problems of the average concentration models is 
possible to be solved using experimental data obtained in a short column ( 0.1Z = ) with a 
real diameter. 

 
Fig. 6.14 Function 11C : 1 - minimization of Q1; 2) - minimization of Q; (circles) - “artificial 
experimental data” (6.2.12) 
2.2 Chemical adsorption 
The convection-diffusion model of the non-stationary chemical adsorption [6, 7] has the 
form (3.2.18, 3.2.19): 

 

( )

( )

2 2
11 11 11 11 11

1 11 0 11 132 2

13 23
0 11 13 13 23 13 23

0 0
11 11 13 23 23

1 ,

0, ;

0, , 0, ;

c c c c cu D k c c
t z r rz r

dc dc
k c c kc c kc c

dt dt
t c c c c c

 ∂ ∂ ∂ ∂ ∂
+ = + + − − ∂ ∂ ∂∂ ∂ 

= − − = = −

= ≡ ≡ ≡  (0.4.14) 

“Theoretical 
values” 

“Experimental values” 
Q Q1 Q2 Q3 

a0 1,0471 2,2291 0,7962 0,8721 0,9005 
aZ 9.9246×10−2 0,6849 7.3048×10−4 4.4452×10−4 3.1391×10−4 
aT −3.7701×10−2 −0,7892 2.7259×10−4 1.8971×10−4 2.0352×10−4 



 
( )

11 11
0

0 0 0 0 11
11 11 1 11 1 11 11

0

0, 0; , 0;

0, , .
z

c cr r r
r r

cz c c u c u r c D
z =

∂ ∂
= ≡ = ≡

∂ ∂
∂ = ≡ ≡ −  ∂   

The use of the expressions (6.2.2)–(6.2.4) and averaging procedure (6.0.1)–(6.0.5) leads to 
the average concentration model of the chemical absorption: 

( )

( )

2
11 11 11

1 1 11 11 0 11 132

13
0 11 13 13 23

23
13 23

0 0 0 11
11 11 13 23 23 11 11

0

;

;

;

0, , 0, ; 0, , 0.
 z

c c cu u c D k c c
t z z z

d c
k c c kc c

dt
d c

kc c
t

ct c c c c c z c c
z

αα

β

β

=

∂ ∂ ∂∂
+ + = − −
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= − −

= −
∂

∂ = ≡ ≡ ≡ = ≡ ≡ ∂   (0.4.15) 

where ( ),t zα α=  and ( ),t zβ β=  are presented in (6.2.6). 
The using of the generalized variables (6.2.7) leads to: 
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013
3 11 13 23 13 23

023
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11
11 13 23 11
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;

;
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Z
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dT
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BKc C C
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=
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 ∂
= ≡ ≡ ≡ = ≡ ≡ ∂   (0.4.16) 

where 
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α α

β β

= = =

= = =

= = =

∫

∫
 (0.4.17) 

 

( ) ( ) ( ) ( )

( ) ( )

1 1

11 11 13 13
0 0
1

23 23
0

, 2 , , Z , , 2 , , Z ,

, 2 , , Z .

C T Z RC T R dR C T Z RC T R dR

C T Z RC T R dR

= =

=

∫ ∫

∫
 

In (6.2.8) Z is a parameter in ( )13 ,C T Z , ( )23 ,C T Z  and T is a parameter in ( )11 ,C T Z . 
Practically, for lengthy (long-term) processes 

20 10γ −≤ ≤  and high columns 
( )2 1 20 10 , 0 Pe Fo 10ee − − −= ≤ = = ≤ , the problem (6.2.8) has the form: 



 

( )

( )

11
11 0 11 13

013
3 11 13 23 13 23

023
11 13 23

13 23 11

;

;

;

0, 0, 1; 0, 1.

dC dAA C K C C
dZ dZ

dC
K C C BKc C C

dT
dC

BKc C C
dT

T C C Z C

+ = − −

= − −

= −

= = ≡ = ≡  (0.4.18) 
The solution of the model equations (3.2.23) for the case 

20 10 ,ε −= ≤  
1 2 1 0 0 2

0 3 23 110 Pe Fo 10 , Fo 10 , 1; 10 ,K K K c ce− − − −= = ≤ = = = = = =  permits to obtain the average 

concentrations ( ) ( ) ( )11 13 23, , , , ,C T Z C T Z C T Z  and the functions ( ) ( ), , ,A T Z B T Z  in (6.2.9). The 
results for ( ) ( ), , ,A T Z B T Z show that ( ), 1B T Z ≡  and ( ),A T Z  is possible to be presented as a 
linear approximation: 
 0 z t .A a a Z a T= + +  (0.4.19) 
The obtained (“theoretical”) parameter values are 0 z

21.0471 9.9247.10, ,a a −= =  
2

t 3.7696.10 .a −−= The function ( ),A T Z is presented in Figs. 6.15 and 6.16. 
The parameters identification of the chemical adsorption models is similar to the physical 
adsorption case. 

 
Fig. 6.15 Function A(T,Z): (1) Z = 0.2; (2) Z = 0.4; (3) Z = 0.6; (4) Z = 0.8; (5) Z = 1.0 



 
Fig. 6.16 Function A(T,Z): (1) T = 0.2; (2) T = 0.4; (3) T = 0.6; (4) T = 0.8; (5) T = 1.0 
 
 
 
In the cases of physical absorption [1–4] in a high counter-current gas-liquid column the 
mass transfer process model has to be presented in a two-coordinate system (see (3.1.8)): 

 

( ) ( ) ( )
2

1 22

1 1 2 2

1Fo 1 ;

0, 0; 1, 0; 1,2;

0, 1; 0, 0.

jj j j
j j j

j

j j

C C C
U R K C C

Z R R R

C C
R R j

R R
Z C Z C

 ∂ ∂ ∂
= + + − −  ∂ ∂ ∂ 

∂ ∂
= ≡ = ≡ =

∂ ∂
= ≡ = ≡  (0.4.20) 

1. Convection-diffusion type model 
Let us consider the convection-diffusion type model (8.0.1), where the velocity 
distributions in the phases are of Poiseuille type [5] and the difference between the phase 
velocities is in the average velocities, only: 
 

2
1 2 2 2 .U U R= = −  (0.5.1) 

From (8.0.1) and (8.1.1) it is possible to obtain the next form of the problem for computer 
modelling of the absorption processes in counter-current column apparatuses: 

 

( ) ( )
2

2 1 1 1
1 1 1 22

1

1 1
1 1

12 2 Fo ;

0, 0; 1, 0; 0, 1.

C C CR K C C
Z R R R

C CR R Z C
R R

 ∂ ∂ ∂
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∂ ∂
= ≡ = ≡ = ≡

∂ ∂  (0.5.2) 
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2
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C C CR K C C
Z R R R
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 ∂ ∂ ∂
− = + + − ∂ ∂ ∂ 

∂ ∂
= ≡ = ≡ = ≡

∂ ∂  (0.5.3) 
1.1. Calculation problem 



The numerical solution of the equations set (8.1.2), (8.1.3) is possible if  an iterative 
procedure is used [6], where the concentration distributions in the column will be obtained 
in two matrix forms on every iteration step s: 
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1

0 0
1 1 1

0 01
1 10 0

, , 1, 2,..., , 1, 2,..., ,

110 1, 0 1, , , .
1 1
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R Z R Z

ρζ ρ ρ ζ ζ

ζρ ρ ζ
ρ ζ

= = =

−−
≤ ≤ ≤ ≤ = = =

− −  (0.5.4) 
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− −  (0.5.5) 
The iterative procedure starts with the zero step 0s = : 
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ρζ
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ρ ρ ζ ζ

= ≡ = =

= = =  (0.5.6) 
where ( )0

1 1,C R Z  is a solution of the problem: 
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∂ ∂  (0.5.7) 
The solution of (8.1.7) permits to obtain a new function: 
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The iterative step s is the solution of the problem: 

 

( ) ( )( )
2

12 2 2 2
2 2 1 22

2

2 2
2 2

1 ˆ2 2 Fo ;

0, 0; 1, 0; 0, 0,

s s s
s s

s s
s

C C CR K C C
Z R R R

C CR R Z C
R R

− ∂ ∂ ∂
− = + + − ∂ ∂ ∂ 

∂ ∂
= ≡ = ≡ = ≡

∂ ∂  (0.5.9) 

where 
( ) ( ) ( )

2

1 1 0 0
1 2 2

ˆ ˆ, , 1, 2,..., , 1, 2,...,s sC R Z aρζ ρ ρ ζ ζ− −= = = . 
The solution of (8.1.9) permits to obtain a new function: 
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s s s sC R Z C R Z C R Z bρζ
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= − = =

= =  (0.5.10) 
which will be used for solving (8.1.2) at the ths  iterative step: 
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 ∂ ∂ ∂
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∂ ∂
= ≡ = ≡ = ≡

∂ ∂  (0.5.11) 
The solution of the problem (8.1.2), (8.1.3) is possible to be obtained using MATLAB 
program. It solves the equations (8.1.9), (8.1.11) through iterative procedure, using the 
built-in MATLAB function pdepe, which solves the initial-boundary value problems for 
parabolic partial differential equations. The obtained matrices 

1
1

ˆ sC −

 (from (8.1.11))) and 2
ˆ sC  

(from (8.1.9))) are introduced in (8.1.9) and (8.1.11) respectively using the built-in 
MATLAB function interp2. 



The stop criterion of the iterative procedure is the condition: 

 

( )
1 1

1

1
3 0 0

110 , 1,2,..., , 1, 2,..., .
ss

s

a a
a

ρζ ρζ

ρζ

ρ ρ ζ ζ
−

−
−

≤ = =

 (0.5.12) 
1.2. Concentration distributions 
A solution of the problem (8.1.2), (8.1.3) is obtained for the case 1 2Fo 0.1, Fo 0.01,= =  

1 21, 0.1K K= =  and the concentration distributions ( ),j jC R Z  for 0.2,0.5,0.8,1.0, 1,2jZ j= =  are 

presented on Fig. 8.1 and Fig.8.2. These results permit to obtain ( ) ( ), , 1, 2j j j jC Z A Z j =  in 
(6.1.7) (Figs. 6.1–6.4) and “theoretical” parameters values (6.1.9) presented in Table 6.1 

 
Fig. 8.1 Concentration distributions ( )1 1,C R Z at Fo1=0.1, K1=1: 

(1)- ( )1 ,0.2C R ; (2)- ( )1 ,0.5C R ; (3)- ( )1 ,0.8C R ; (4)- ( )1 ,1C R . 

 



Fig. 8.2 Concentration distributions ( )2 2,C R Z at Fo2=0.01, K2=0.1: 

(1)- ( )2 ,0.2C R ; (2)- ( )2 ,0.5C R ; (3)- ( )2 ,0.8C R ; (4)- ( )2 ,1C R . 
1.3. Absorption process efficiency 
The solution of the problem (8.1.2), (8.1.3) permit to obtain the absorption efficiency g and 
the gas absorption degree G in the column using the inlet and outlet average convective 
mass flux at the cross-sectional area surface in the column: 

 
( ) ( )

0
0 0
1 1 1 12 0 0

0 1 10

2 , , .
r gg u c ru r c r l dr G

r u c
= − =∫

 (0.5.13) 
The absorption degree in generalized variables (3.1.4) has the form: 

 
( ) ( )

1

1 1
0

1 2 ,1 .G RU R C R dR= − ∫
 (0.5.14) 

In the cases of absence of the velocity radial non-uniformity ( ) the absorption 
degree has the form: 

 
( )

1

0 1
0

1 2 ,1G RC R dR= − ∫
 (0.5.15) 

and the reduction in the process efficiency due to the radial non-uniformity of the velocity 
is shown in Table 8.1. 
Table 8.1 Absorption degree 
2. Average-concentration model 
In the cases of unknown velocity 
distribution in high counter-
current columns the average-
concentration model (6.1.10) is 
possible to be used for the physical absorption modeling: 

 

( ) ( ) ( )

( ) ( ) ( )

1
01 11 1 11 1 01 1 2 1 1

1

2
02 12 2 12 2 02 1 2 2 2

2

; 0,   C 0 1.

; 0,   C 0 0,

d Ca a Z a C K C C Z
dZ
d Ca a Z a C K C C Z
dZ

+ + = − − = =

+ + = − = =
 (0.6.1) 

where 0 1, , 1, 2j ja a j =  are the “theoretical” parameters values presented in Table 6.1. 
2.1. Calculation problem 
The numerical solution of the equation set (8.2.1) is possible if MATLAB and an iterative 
procedure are used [6], where the average concentration distributions in the column will be 
obtained in two vectors forms on every iteration step s: 

 
( )

1

0 1
1 1 1 1 1 0

1
, 1, 2,..., , 0 1, .

1
s sC Z m Z Zζ

ζ
ζ ζ

ζ
−

= = ≤ ≤ =
−  (0.6.2) 

 
( )

2

0 2
2 2 2 2 2 0

1
, 1, 2,..., , 0 1, .

1
s sC Z n Z Zζ

ζ
ζ ζ

ζ
−

= = ≤ ≤ =
−  (0.6.3) 

The iterative procedure starts with the zero step 0s = : 
( ) ( )

2 1

0 0 0 0 0 0
2 2 2 1 1 10, 1, 2,..., ; , 1, 2,..., ,C Z n C Z mζ ζζ ζ ζ ζ= ≡ = = =  (0.6.4) 

where ( )
1

0 0
1 1C Z mζ=  is solution of the problem: 

1 2 1U U= ≡

Fo1=0.1, 
K1=1 
Fo2=0.01, 
K2=0.1 

2
1 2 2 2U U R= = −

  

G 0.5814 0.6336 

1 2 1U U= ≡



 
( ) ( )

0
0 0 01

01 11 1 11 1 1 1 1 1
1

; 0, C 0 1.
d Ca a Z a C K C Z
dZ

+ + = − = ≡
 (0.6.5) 

As a result is possible to obtain 

 ( ) ( )0 0
1 2 1 1 2

ˆ 1 .C Z C Z Z= = −  (0.6.6) 
The iterative procedure s is the sequentially solving the equations: 

( ) ( )( ) ( )12
02 12 2 12 2 2 1 2 2 2

2

ˆ ; 0, C 0 0;
s

ss s sd Ca a Z a C K C C Z
dZ

−+ + = − = ≡
 (0.6.7) 

( ) ( ) ( )1
01 11 1 11 1 1 1 2 1 1

1

ˆ ; 0, C 0 1,
s

s s s sd Ca a Z a C K C C Z
dZ

+ + = − − = ≡
 (0.6.8) 

where 
( ) ( ) ( ) ( ) ( ) ( )1 1
1 2 1 1 2 2 1 2 2 1

ˆ ˆ1 , 1 .s s s sC Z C Z Z C Z C Z Z− −= = − = = −  (0.6.9) 
The stop criterion of the iterative procedure is the condition: 

( )
1 1

1

1
3 0

110 , 1,2,..., .
ss

s

m m
m

ζ ζ

ζ

ζ ζ
−

−
−

≤ =

  (0.6.10) 
The solving of the problem (8.2.7), (8.2.8) was obtained by MATLAB program, using 

iterative algorithm. First it solves the equation (8.2.7) using 
( ) ( ) ( ) ( )1 1
1 2 1 1 2

ˆ 1s sC Z C Z Z− −= = −  and 
the built-in MATLAB function ode45, which solves non-stiff differential equations by 

medium order method. The obtained matrix ( ) ( )2 1 2 2 1
ˆ 1s sC Z C Z Z= = −  is introduced in (8.2.8) 

using the built-in MATLAB interpolation function interp1. 
The presented approach is used for the parameter identification in Chap. 6. 
 


