
This survey presents the theoretical methods of chemical engineering 
for modeling and simulation of industrial processes. On this base it is 
possible to formulate correct experimental conditions and to under-
stand rightly the experimental results.The book uses the mechanics 
of continuous media approach for modeling of the simple processes as 
hydrodynamic processes, mass and heat transfer processes. The theory 
of the scalar, vector and tensor fields permit to create the basic equa-
tions and boundary conditions. The problems of rheology, turbulence, 
turbulent diffusion and turbulent mass transfer are examined too.
The book incorporates a lot of fundamental knowledge, but it is 
assumed that the readers are familiar with the mathematics at engineer-
ing level and that they thought some special topics in usual university 
courses. It includes examples at the end of all chapters  using the 
author’s investigations. Therefore, it is highly valuable for scientists 
as well as graduate and PhD students.
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Abstract 

 

The theoretical methods of chemical engineering for modeling and simulation of 

industrial processes are surveyed in this book. On this basis it is possible to formulate correct 

experimental conditions and to understand correctly the experimental results. 

The continuous media approach is used for modeling simple processes such as 

hydrodynamic processes, mass transfer processes, and heat transfer processes. The theory of 

scalar, vector, and tensor fields permits one to create the basic equations and boundary 

conditions. Problems of rheology, turbulence, turbulent diffusion, and turbulent mass transfer 

are examined too. 

The chemical processes and adsorption models and especially the stoichiometry, 

reaction mechanism, reaction route, kinetics of simple and complex chemical reactions, 

physical and chemical adsorption, and heterogeneous reactions are discussed. 

Different types of complex process models are presented depending on the process 

mechanism. The relation between the mechanism and the mathematical description is shown 

in the case of physical absorption. Characteristic scales, generalized variables, and 

dimensionless parameters are used for analysis of the process mechanism. Full information 

about this mechanism permits the creation of theoretical models. Mass transfer in film flows 

is an example of such models, where the effects of a chemical reaction and gas motion and 

absorption of slightly and highly soluble gases are considered.  

The very complicated hydrodynamic behavior in column apparatuses is a reason for 

using diffusion-type models in the cases of mass transfer with a chemical reaction and 

interphase mass transfer. An average concentration model of an airlift reactor is presented. 

Similarity theory models are demonstrated in the case of absorption in packed-bed 

columns. Generalized (dimensionless) variables and generalized individual cases are used for 

formulation of the similarity conditions and similarity criteria. The dimension analysis, 

mathematical structure of the models, and some errors in criteria models are discussed. 

Regression models are preferred when there is complete absence of information about 

the process mechanism and the least-squares method is used for parameter identification.  



A theoretical analysis of models of the mass transfer theories is presented in the cases of 

linear and nonlinear mass transfer. The model theories, boundary layer theory, mass transfer 

in countercurrent flows, influence of the intensive mass transfer on the hydrodynamics, 

boundary conditions of the nonlinear mass transfer problem, nonlinear mass transfer in the 

boundary layer, and the Marangoni effect are examined. 

A qualitative theoretical analysis is presented as a generalized analysis. The use of 

generalized variables permits the analysis of the models of mass transfer with a chemical 

reaction, nonstationary processes, and stationary processes and the effect of the chemical 

reaction rate. 

The generalized analysis permits the analysis of the mechanism of gas–liquid chemical 

reactions in the cases of irreversible chemical reactions, homogenous catalytic reactions, and 

reversible chemical reactions and the relationships between the chemical and physical 

equilibria during absorption. 

A comparative qualitative analysis for process mechanism identification is presented in 

the cases of different nonlinear effects, nonstationary absorption mechanisms, and 

nonstationary evaporation kinetics. 

A quantitative theoretical analysis is presented for solution of the scale-up problems and 

statistical analysis of the models. The similarity and scale-up, scale effect and scale effect 

modeling, scale-up theory and hydrodynamic modeling, and scale effect and scale-up of 

column apparatuses are discussed. The statistical analysis ranges over basic terms, statistical 

treatment of experimental data, testing of hypotheses, significance of parameters, and model 

adequacy of different types of models. 

The stability analysis of the models examines the general theory of stability (evolution 

equations, bifurcation theory), hydrodynamic stability (fundamental equations, power theory, 

linear theory, stability, bifurcations, and turbulence), the Orr–Sommerfeld equation (parallel 

flows, almost parallel flows, linear stability, and nonlinear mass transfer), and self-organizing 

dissipative structures (interphase heat and mass transfer between gas–liquid immovable 

layers, Oberbeck–Boussinesq equations, gas absorption, and liquid evaporation). 

The calculation problems in chemical engineering theory are related to the solutions of 

differential equations and identification of the model parameters (estimation). Different 

analytical methods, such as the similarity variables method, Green’s functions, Laplace 

transforms, the Sturm–Liouville problem, the eigenvalue problem, and perturbation methods, 

are presented. Numerical methods (finite differences method, finite elements method) are 

examined on the basis of commercial software. Iterative solution methods are considered too. 



Parameter estimation methods are discussed in the case of incorrect (ill-posed) inverse 

problems. An iterative method for parameter identification is presented for solution of correct, 

incorrect, and essentially incorrect problems. The optimization methods are examined as a 

basis of the least squares function minimization. 

Models of chemical plant systems are presented as a set of process models and the 

relations between them. An algorithm for simulation of chemical plants is proposed. The 

methods of optimal synthesis of chemical plants are considered in the case of optimal 

synthesis of heat recuperation systems. The renovation of chemical plants is formulated as a 

mathematical model. The main problems are the renovation by optimal synthesis, renovation 

by introduction of new equipment, and renovation by introduction of new processes. 

Examples from the author’s investigations are presented at the end of all chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Motto 

 

Experimenters are the striking force of science. The experiment is a question which 

science puts to nature. The measurement is the registration of nature’s answer. But before 

the question is put to nature, it must be formulated. Before the measurement result is used, it 

must be explained, i.e., the answer must be understood correctly. These two problems are 

obligations of the theoreticians. 

 

Max Planck 
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Preface 

 

The role of theory in science was formulated very brilliantly by Max Planck: 

“Experimenters are the striking force of science. The experiment is a question which 

science puts to nature. The measurement is the registration of nature’s answer. But before 

the question is put to nature, it must be formulated. Before the measurement result is used, it 

must be explained, i.e., the answer must be understood correctly. These two problems are 

obligations of the theoreticians.” 

Chemical engineering is an experimental science, but theory permits us to formulate 

correct experimental conditions and to understand correctly the experimental results. The 

theoretical methods of chemical engineering for modeling and simulation of industrial 

processes are surveyed in this book. 

Theoretical chemical engineering solves the problems that spring up from the necessity 

for a quantitative description of the processes in the chemical industry. They are quite 

different at the different stages of the quantitative description, i.e., a wide circle of theoretical 

methods are required for their solutions. 

Modeling and simulation are a united approach to obtain a quantitative description of 

the processes and systems in chemical engineering and chemical technology, which is 

necessary to clarify the process mechanism or for optimal process design, process control, and 

plant renovation. 

Modeling is the creation of the mathematical model, i.e., construction of the 

mathematical description (on the basis of the process mechanism), calculation of the model 

parameters (using experimental data), and statistical analysis of the model adequacy. 

Simulation is a quantitative description of the processes by means of algorithms and 

software for the solution of the model equations and numerical (mathematical) experiments. 

The processes in chemical engineering are composed of many simple processes, such as 

hydrodynamic, diffusion, heat conduction, and chemical processes. The models are created in 

the approximations of continuous media mechanics. 

The complex process model is constructed on the basis of the physical mechanism 

hypothesis. In cases where full information is available, it is possible to create a theoretical 

type of model. If the information is insufficient (it is not possible to formulate the 

hydrodynamic influence on the heat and mass transfer), the model is pattern theory, diffusion 

type or similarity criteria type. The absence of information leads to the regression model. 



The theoretical analysis of the models solves qualitative, quantitative, and stability 

problems. The qualitative analysis clarifies the process mechanism or similarity conditions. 

The quantitative analysis solves the problems related to the scale-up and model adequacy. The 

stability analysis explains the increase of the process efficiency as a result of self-organizing 

dissipative structures. 

All theoretical methods are related to calculation problems. The solutions of the model 

equations use analytical and numerical methods. The identification (estimation) of the model 

parameters leads to the solutions of the inverse problems, but very often they are incorrect 

(ill-posed) and need the application of regularization methods, using a variational or an 

iterative approach. The solutions of many chemical engineering problems (especially 

parameter identification) use minimization methods.  

The book ideology briefly described above addresses the theoretical foundation of 

chemical engineering modeling and simulations. It is concerned with building, developing, 

and applying the mathematical models that can be applied successfully for the solution of 

chemical engineering problems. Our emphasis is on the description and evaluation of models 

and simulations. The theory selected reflects our own interests and the needs of models 

employed in chemical and process engineering. We hope that the problems covered in this 

book will provide the readers (Ph.D. students, researchers, and teachers) with the tools to 

permit the solution of various problems in modern chemical engineering, applied science, and 

other fields through modeling and simulations.  

The solutions of the theoretical problems of modeling and simulations employ a number 

of mathematical methods (exact, asymptotic, numerical, etc.) whose adoption by engineers 

will permit the optimal process design, process control, and plant renovation.  

The modeling and the simulations of chemical systems and plants can be achieved very 

often through a hierarchical modeling. This approach uses the structural analysis of the 

process systems. The result of the structural analysis is a quantitative description allowing 

further optimal process design, process control, and plant renovation. The effectiveness of the 

optimal solutions can be enhanced if they are combined with suitable methods of optimal 

synthesis. The latter is a methodical basis and a guide for process system renovations.  

The book incorporates a lot of fundamental knowledge, but it is assumed that the 

readers are familiar with the mathematics at engineering level of usual university courses.  

The above comments are the main reasons determining the structure of this book. 

Part 1 concerns model construction problems. The mechanics of the continuum 

approach is used for modeling hydrodynamic, diffusion, and heat conduction processes as 



basic (elementary) processes in chemical engineering. The modeling of complex processes in 

chemical engineering is presented on the basis of the relation between the process mechanism 

and the mathematical description. The models are classified in accordance with the 

knowledge available concerning the process mechanisms. This means a situation when a 

theoretical model is available, i.e., sufficient knowledge of the process mechanism as well as 

the opposite situation of knowledge deficiency, which leads to regression models. Theoretical 

diffusion, dimensionless, and regression types of models are illustrated. The linear, nonlinear, 

and pattern mass transfer theories are considered too.  

Part 2 focuses on theoretical analysis of chemical engineering process models. The 

qualitative analysis uses generalized (dimensionless) variables and shows the degree to which 

the different physical effects participate in a complex process. On this basis, similarity criteria 

and physical modeling conditions are shown. The quantitative analysis concerns the scale-up 

problems and statistical analysis of the models. The stability analysis of the models permits 

the nonlinear mass transfer effects to be obtained and the creation of the self-organizing 

dissipative structures with very intensive mass transfer. 

Part 3 addresses the calculation problems in modeling and simulation. Different 

analytical and numerical methods for the solution of differential equations are considered. The 

estimation of the model parameters is related to the solutions of the ill-posed inverse 

problems. An iterative method for incorrect problem solutions is presented. Different methods 

for function minimization are shown for the purposes of process optimization and model 

parameter identification. 

Part 4 examines modeling and simulation of the chemical plant systems. The 

simulation of the systems on the basis of structure system analysis is presented. The optimal 

synthesis of chemical plants is considered in the case of the optimal synthesis of heat 

recuperation systems.  

This book can be used as a basis for theoretical and experimental investigations in the 

field of the chemical engineering. The methods and analyses presented permit theoretical 

problems to be solved, the experimental conditions to be correctly formulated, and the 

experimental results to be interpreted correctly.  

The fundamental suggestion in this book is the necessity for full correspondence (direct 

and inverse) between the separated physical effect in the process and the mathematical 

(differential) operator in the model equation. 

The main part of this book has a monographic character and the examples are from the 

author’s papers. The book uses the author’s lectures “Course of modeling and optimization” 



(subject chemical cybernetics in the Faculty of Chemistry of Sofia University “St. Kliment 

Ohridski”), “Course of modeling and simulation of chemical plant systems” (Bourgas 

University “Prof. Asen Zlatarov”), and “Master’s classes of theoretical chemical engineering” 

(Bourgas University “Prof. Asen Zlatarov”). That is why, as a whole, it is possible for it to be 

used as teaching material for modeling and simulation. This book proposes an exact 

formulation and the correct solution of quantitatively described problems in chemical 

engineering. It may be useful for scientists, Ph.D. students, and undergraduate students. 
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