C. Boyadjiev Theoretical Chemical Engineering

Christo Boyadjiev

This survey presents the theoretical methods of chemical engineering for modeling and simulation of industrial processes. On this base it is possible to formulate correct experimental conditions and to understand rightly the experimental results. The book uses the mechanics of continuous media approach for modeling of the simple processes as hydrodynamic processes, mass and heat transfer processes. The theory of the scalar, vector and tensor fields permit to create the basic equations and boundary conditions. The problems of rheology, turbulence, turbulent diffusion and turbulent mass transfer are examined too.

The book incorporates a lot of fundamental knowledge, but it is assumed that the readers are familiar with the mathematics at engineering level and that they thought some special topics in usual university courses. It includes examples at the end of all chapters using the author's investigations. Therefore, it is highly valuable for scientists as well as graduate and PhD students.

> springer.com

Theoretical Chemical Engineering

Theoretical Chemical Engineering

Modeling and Simulation

58663 WMXDesign GmbH Heidelberg – Bender 17.6.10 Dieser pdf-file gibt nur annähernd das endgültige Druckergebnis wieder 1 This pdf file suggests the print version only approximately!

Christo B. Boyadjiev

Theoretical Chemical Engineering Modeling & Simulation

Abstract

The theoretical methods of chemical engineering for modeling and simulation of industrial processes are surveyed in this book. On this basis it is possible to formulate correct experimental conditions and to understand correctly the experimental results.

The continuous media approach is used for modeling simple processes such as hydrodynamic processes, mass transfer processes, and heat transfer processes. The theory of scalar, vector, and tensor fields permits one to create the basic equations and boundary conditions. Problems of rheology, turbulence, turbulent diffusion, and turbulent mass transfer are examined too.

The chemical processes and adsorption models and especially the stoichiometry, reaction mechanism, reaction route, kinetics of simple and complex chemical reactions, physical and chemical adsorption, and heterogeneous reactions are discussed.

Different types of complex process models are presented depending on the process mechanism. The relation between the mechanism and the mathematical description is shown in the case of physical absorption. Characteristic scales, generalized variables, and dimensionless parameters are used for analysis of the process mechanism. Full information about this mechanism permits the creation of theoretical models. Mass transfer in film flows is an example of such models, where the effects of a chemical reaction and gas motion and absorption of slightly and highly soluble gases are considered.

The very complicated hydrodynamic behavior in column apparatuses is a reason for using diffusion-type models in the cases of mass transfer with a chemical reaction and interphase mass transfer. An average concentration model of an airlift reactor is presented.

Similarity theory models are demonstrated in the case of absorption in packed-bed columns. Generalized (dimensionless) variables and generalized individual cases are used for formulation of the similarity conditions and similarity criteria. The dimension analysis, mathematical structure of the models, and some errors in criteria models are discussed.

Regression models are preferred when there is complete absence of information about the process mechanism and the least-squares method is used for parameter identification. A theoretical analysis of models of the mass transfer theories is presented in the cases of linear and nonlinear mass transfer. The model theories, boundary layer theory, mass transfer in countercurrent flows, influence of the intensive mass transfer on the hydrodynamics, boundary conditions of the nonlinear mass transfer problem, nonlinear mass transfer in the boundary layer, and the Marangoni effect are examined.

A qualitative theoretical analysis is presented as a generalized analysis. The use of generalized variables permits the analysis of the models of mass transfer with a chemical reaction, nonstationary processes, and stationary processes and the effect of the chemical reaction rate.

The generalized analysis permits the analysis of the mechanism of gas–liquid chemical reactions in the cases of irreversible chemical reactions, homogenous catalytic reactions, and reversible chemical reactions and the relationships between the chemical and physical equilibria during absorption.

A comparative qualitative analysis for process mechanism identification is presented in the cases of different nonlinear effects, nonstationary absorption mechanisms, and nonstationary evaporation kinetics.

A quantitative theoretical analysis is presented for solution of the scale-up problems and statistical analysis of the models. The similarity and scale-up, scale effect and scale effect modeling, scale-up theory and hydrodynamic modeling, and scale effect and scale-up of column apparatuses are discussed. The statistical analysis ranges over basic terms, statistical treatment of experimental data, testing of hypotheses, significance of parameters, and model adequacy of different types of models.

The stability analysis of the models examines the general theory of stability (evolution equations, bifurcation theory), hydrodynamic stability (fundamental equations, power theory, linear theory, stability, bifurcations, and turbulence), the Orr–Sommerfeld equation (parallel flows, almost parallel flows, linear stability, and nonlinear mass transfer), and self-organizing dissipative structures (interphase heat and mass transfer between gas–liquid immovable layers, Oberbeck–Boussinesq equations, gas absorption, and liquid evaporation).

The calculation problems in chemical engineering theory are related to the solutions of differential equations and identification of the model parameters (estimation). Different analytical methods, such as the similarity variables method, Green's functions, Laplace transforms, the Sturm–Liouville problem, the eigenvalue problem, and perturbation methods, are presented. Numerical methods (finite differences method, finite elements method) are examined on the basis of commercial software. Iterative solution methods are considered too.

Parameter estimation methods are discussed in the case of incorrect (ill-posed) inverse problems. An iterative method for parameter identification is presented for solution of correct, incorrect, and essentially incorrect problems. The optimization methods are examined as a basis of the least squares function minimization.

Models of chemical plant systems are presented as a set of process models and the relations between them. An algorithm for simulation of chemical plants is proposed. The methods of optimal synthesis of chemical plants are considered in the case of optimal synthesis of heat recuperation systems. The renovation of chemical plants is formulated as a mathematical model. The main problems are the renovation by optimal synthesis, renovation by introduction of new equipment, and renovation by introduction of new processes.

Examples from the author's investigations are presented at the end of all chapters.

Motto

Experimenters are the striking force of science. The **experiment** is a question which science puts to nature. The **measurement** is the registration of nature's answer. But **before** the question is put to nature, it **must be formulated.** Before the measurement result is used, it **must be explained,** i.e., the answer must be understood correctly. These **two problems** are obligations of the **theoreticians.**

Max Planck

Contents

Preface	XX
Introduction	XXIV
0.1 Quantitative Description	XXIV
0.2 Modeling and Simulation	XXIV
0.3 Chemical Engineering and Chemical Technology	XXVI
0.4 Theoretical Problems and Methods	XXVII
0.5 Physical Fundamentals of Theoretical Chemical Engineering	XXVIII

Part 1

Model Construction Problems

Chapter 1 Simple Process Models	1
1.1 Mechanics of Continuous Media	2
1.1.1 Scalar and Vector Fields (3)	
1.1.2 Stress Tensor and Tensor Field (5)	
1.2 Hydrodynamic Processes	9
1.2.1 Basic Equations (10)	
1.2.2 Cylindrical Coordinates (13)	
1.2.3 Boundary Conditions (14)	
1.2.4 Laminar Boundary Layer (15)	
1.2.5 Two-Phase Boundary Layers (17)	
1.2.6 Particular Processes (20)	
1.2.7 Generalized Variables (21)	
1.2.8 Basic Parameters (24)	
1.2.9 Rheology (25)	
1.2.10 Turbulence (28)	
1.3 Mass and Heat Transfer Processes	38
1.3.1 Basic Equations (38)	
1.3.2 Boundary Conditions (41)	
1.3.3 Transfer Process Rate (41)	
1.3.4 Diffusion Boundary Layer (43)	

1.3.5 Turbulent Diffusion (44)	
1.3.6 Turbulent Mass Transfer (46)	
1.4 Chemical Processes and Adsorption	48
1.4.1 Stoichiometry (49)	
1.4.2 Mechanism and Reaction Route (49)	
1.4.3 Kinetics of Simple Chemical Reactions (50)	
1.4.4 Kinetics of Complex Reactions (52)	
1.4.5 Adsorption Processes (53)	
1.4.6 Physical Adsorption (53)	
1.4.7 Chemical Adsorption (54)	
1.4.8 Heterogeneous Reactions (55)	
1.5 Examples	56
1.5.1 Dissolution of a Solid Particle (56)	
1.5.1.1 Particle Radius is Constant (56)	
1.5.1.2 Particle Radius Decreases (57)	
1.5.2 Contemporary Approach of Turbulence Modeling (57)	
References	59
Chapter 2 Complex Process Models	61
2.1 Mechanism and Mathematical Description	61
2.1.1 Mechanism of Physical Absorption (61)	01
2.1.2 Mathematical Description (62)	
2.1.3 Generalized Variables and Characteristic Scales (63)	
2.1.4 Dimensionless Parameters and Process Mechanism (63)	
2.1.5 Boundary Conditions and Mechanism (65)	
2.1.6 Kinetics and Mechanism (65)	
2.2 Theoretical Models. Mass Transfer in Film Flows	67
2.2.1 Film with a Free Interface (67)	
2.2.2 Effect of a Chemical Reaction (69)	
2.2.3 Effect of Gas Motion (69)	
2.2.4 Absorption of Slightly Soluble Gas (74)	
2.2.5 Absorption of Highly Soluble Gas (76)	
2.3 Diffusion-Type Models	78
2.3.1 Mass Transfer with a Chemical Reaction (79)	

2.3.4 Airlift Reactor (83)882.4 Similarity Theory Models882.4.1 Absorption in a Packed-Bed Column (88)2.4.2 Generalized (Dimensionless) Variables (89)2.4.3 Generalized Individual Case and Similarity (90)2.4.4 Mathematical Structure of the Models (91)2.4.4 Mathematical Structure of the Models (91)2.4.5 Dimension Analysis (94)2.4.5 Dimension Analysis (94)2.4.6 Some Errors in Criteria Models (96)2.5.7 Regression Models992.5.1 Regression Equations (99)2.5.2 Parameter Identification (100)2.5.3 Least-Squares Method (100)2.6 Examples2.6.1 Effect of Surfactants (101)2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110)86References119Chapter 3 Mass Transfer Theories1223.1 Linear Mass Transfer Theory1223.1.2 Boundary Layer Theory (125)3.1.3 Two-Phase Boundary Layers (126)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)134	2.3.2 Interphase Mass Transfer (79)	
2.4 Similarity Theory Models882.4.1 Absorption in a Packed-Bed Column (88)2.4.2 Generalized (Dimensionless) Variables (89)2.4.3 Generalized Individual Case and Similarity (90)2.4.4 Mathematical Structure of the Models (91)2.4.4 Mathematical Structure of the Models (91)2.4.5 Dimension Analysis (94)2.4.5 Dimension Analysis (94)2.4.6 Some Errors in Criteria Models (96)2.5 Regression Models992.5.1 Regression Equations (99)2.5.2 Parameter Identification (100)2.5.3 Least-Squares Method (100)2.6 Examples2.6.1 Effect of Surfactants (101)2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110)119References119Chapter 3 Mass Transfer Theories1223.1 Linear Mass Transfer Theory1223.1.1 Model Theories (123)3.1.3 Two-Phase Boundary Layers (126)3.2.1 Velocity Distribution (129)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)3.3 Nonlinear Mass Transfer3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)134	2.3.3 Average Concentration Models (80)	
2.4.1 Absorption in a Packed-Bed Column (88) 2.4.2 Generalized (Dimensionless) Variables (89) 2.4.3 Generalized Individual Case and Similarity (90) 2.4.4 Mathematical Structure of the Models (91) 2.4.5 Dimension Analysis (94) 2.4.6 Some Errors in Criteria Models (96) 2.5.7 Regression Models 99 2.5.1 Regression Equations (99) 2.5.2 Parameter Identification (100) 2.5.3 Least-Squares Method (100) 2.6.4 Effect of Surfactants (101) 2.6.5 Effect of Interface Waves (107) 2.6.3 Photobioreactor Model (110) References 119 Chapter 3 Mass Transfer Theories 3.1 Linear Mass Transfer Theory 3.1.2 Boundary Layer Theory (125) 3.1.3 Two-Phase Boundary Layers (126) 3.2.1 Velocity Distribution (129) 3.2.2 Concentration Distribution (131) 3.2.3 Comparison Between Co-current and Countercurrent Flows (132) 3.3 Nonlinear Mass Transfer 3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.3.4 Airlift Reactor (83)	
2.4.2 Generalized (Dimensionless) Variables (89) 2.4.3 Generalized Individual Case and Similarity (90) 2.4.4 Mathematical Structure of the Models (91) 2.4.5 Dimension Analysis (94) 2.4.6 Some Errors in Criteria Models (96) 2.5 Regression Models 99 2.5.1 Regression Equations (99) 2.5.2 Parameter Identification (100) 2.5.3 Least-Squares Method (100) 2.6.4 Effect of Surfactants (101) 2.6.2 Effect of Interface Waves (107) 2.6.3 Photobioreactor Model (110) References 119 Chapter 3 Mass Transfer Theories 3.1 Linear Mass Transfer Theory 3.1.2 Boundary Layer Theory (125) 3.1.3 Two-Phase Boundary Layers (126) 3.2.2 Concentration Distribution (131) 3.2.3 Comparison Between Co-current and Countercurrent Flows (132) 3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135) 3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136) 3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.4 Similarity Theory Models	88
2.4.3 Generalized Individual Case and Similarity (90)2.4.4 Mathematical Structure of the Models (91)2.4.5 Dimension Analysis (94)2.4.6 Some Errors in Criteria Models (96)2.5 Regression Models992.5.1 Regression Equations (99)2.5.2 Parameter Identification (100)2.5.3 Least-Squares Method (100)2.6.4 Effect of Surfactants (101)2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110)References119Chapter 3 Mass Transfer Theories3.1 Linear Mass Transfer Theory3.1.2 Boundary Layer (125)3.1.3 Two-Phase Boundary Layers (126)3.2 Mass Transfer in Countercurrent Flows3.2.1 Velocity Distribution (129)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.4.1 Absorption in a Packed-Bed Column (88)	
2.4.4 Mathematical Structure of the Models (91)2.4.5 Dimension Analysis (94)2.4.6 Some Errors in Criteria Models (96) 2.5 Regression Models 992.5.1 Regression Equations (99)2.5.2 Parameter Identification (100)2.5.3 Least-Squares Method (100)2.6 Examples1012.6.1 Effect of Surfactants (101)2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110) References 119 Chapter 3 Mass Transfer Theories 1213.1 Linear Mass Transfer Theory3.1.2 Boundary Layer Theory (125)3.1.3 Two-Phase Boundary Layers (126) 3.2 Mass Transfer in Countercurrent Flows 3.2.1 Velocity Distribution (129)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132) 3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.4.2 Generalized (Dimensionless) Variables (89)	
2.4.5 Dimension Analysis (94)2.4.6 Some Errors in Criteria Models (96)2.5 Regression Models2.5 Regression Equations (99)2.5.1 Regression Equations (100)2.5.2 Parameter Identification (100)2.5.3 Least-Squares Method (100)2.6 Examples1012.6.1 Effect of Surfactants (101)2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110)References119Chapter 3 Mass Transfer Theories3.1 Linear Mass Transfer Theory3.1.2 Boundary Layer Theory (125)3.1.3 Two-Phase Boundary Layers (126)3.2 Mass Transfer in Countercurrent Flows3.2.1 Velocity Distribution (129)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.4.3 Generalized Individual Case and Similarity (90)	
2.4.6 Some Errors in Criteria Models (96)2.5 Regression Models992.5.1 Regression Equations (99)2.5.2 Parameter Identification (100)2.5.3 Least-Squares Method (100)2.6 Examples1012.6.1 Effect of Surfactants (101)2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110)References119Chapter 3 Mass Transfer Theories3.1 Linear Mass Transfer Theory3.2 Mass Transfer Theory3.1.2 Boundary Layer Theory (125)3.1.3 Two-Phase Boundary Layers (126)3.2 Mass Transfer in Countercurrent Flows3.2.1 Velocity Distribution (129)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.4.4 Mathematical Structure of the Models (91)	
2.5 Regression Models992.5.1 Regression Equations (99)2.5.2 Parameter Identification (100)2.5.2 Parameter Identification (100)2.5.3 Least-Squares Method (100)2.5.3 Least-Squares Method (100)2.6 Examples2.6 Examples1012.6.1 Effect of Surfactants (101)2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110)ReferencesReferences119Chapter 3 Mass Transfer Theories1223.1 Linear Mass Transfer Theory1223.1.1 Model Theories (123)3.1.2 Boundary Layer Theory (125)3.1.3 Two-Phase Boundary Layers (126)3.2 Mass Transfer in Countercurrent Flows3.2.1 Velocity Distribution (129)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)3.33.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)134	2.4.5 Dimension Analysis (94)	
2.5.1 Regression Equations (99)2.5.2 Parameter Identification (100)2.5.3 Least-Squares Method (100)2.6.1 Effect of Surfactants (101)2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110)References119Chapter 3 Mass Transfer Theories3.1 Linear Mass Transfer Theory3.1.1 Model Theories (123)3.1.2 Boundary Layer Theory (125)3.1.3 Two-Phase Boundary Layers (126)3.2 Mass Transfer in Countercurrent Flows3.2.1 Velocity Distribution (129)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.4.6 Some Errors in Criteria Models (96)	
2.5.2 Parameter Identification (100)2.5.3 Least-Squares Method (100)2.5.3 Least-Squares Method (100)2.6 Examples1012.6.1 Effect of Surfactants (101)2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110)References119Chapter 3 Mass Transfer Theories1223.1 Linear Mass Transfer Theory3.1.1 Model Theories (123)3.1.2 Boundary Layer Theory (125)3.1.3 Two-Phase Boundary Layers (126)3.2 Mass Transfer in Countercurrent Flows3.2.1 Velocity Distribution (129)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)3.3 Nonlinear Mass Transfer3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.5 Regression Models	99
2.5.3 Least-Squares Method (100)2.6 Examples1012.6.1 Effect of Surfactants (101)2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110)References119Chapter 3 Mass Transfer Theories3.1 Linear Mass Transfer Theory3.1 Linear Mass Transfer Theory3.1.1 Model Theories (123)3.1.2 Boundary Layer Theory (125)3.1.3 Two-Phase Boundary Layers (126)3.2 Mass Transfer in Countercurrent Flows3.2.1 Velocity Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)3.3 Nonlinear Mass Transfer3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.5.1 Regression Equations (99)	
2.6 Examples1012.6.1 Effect of Surfactants (101)2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110)ReferencesReferences119Chapter 3 Mass Transfer Theories1223.1 Linear Mass Transfer Theory1223.1.1 Model Theories (123)1193.1.2 Boundary Layer Theory (125)1283.2.1 Velocity Distribution (129)1283.2.2 Concentration Distribution (131)1283.2.3 Comparison Between Co-current and Countercurrent Flows (132)1333.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)1333.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)133	2.5.2 Parameter Identification (100)	
2.6.1 Effect of Surfactants (101)2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110)References119Chapter 3 Mass Transfer Theories3.1 Linear Mass Transfer Theory3.1.1 Model Theories (123)3.1.2 Boundary Layer Theory (125)3.1.3 Two-Phase Boundary Layers (126)3.2 Mass Transfer in Countercurrent Flows3.2.1 Velocity Distribution (129)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)3.3 Nonlinear Mass Transfer1333.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.5.3 Least-Squares Method (100)	
2.6.2 Effect of Interface Waves (107)2.6.3 Photobioreactor Model (110)References119Chapter 3 Mass Transfer Theories1223.1 Linear Mass Transfer Theory1223.1 Linear Mass Transfer Theory1223.1.1 Model Theories (123)3.1.2 Boundary Layer Theory (125)3.1.3 Two-Phase Boundary Layers (126)3.2 Mass Transfer in Countercurrent Flows1283.2.1 Velocity Distribution (129)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)3.3 Nonlinear Mass Transfer1333.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.6 Examples	101
2.6.3 Photobioreactor Model (110)References119Chapter 3 Mass Transfer Theories1223.1 Linear Mass Transfer Theory1223.1 Linear Mass Transfer Theory1223.1.1 Model Theories (123)3.1.2 Boundary Layer Theory (125)3.1.3 Two-Phase Boundary Layers (126)3.2 Mass Transfer in Countercurrent Flows3.2 Mass Transfer in Countercurrent Flows1283.2.1 Velocity Distribution (129)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)3.3 Nonlinear Mass Transfer1333.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.6.1 Effect of Surfactants (101)	
References119Chapter 3 Mass Transfer Theories1223.1 Linear Mass Transfer Theory1223.1 Linear Mass Transfer Theory1223.1.1 Model Theories (123)1223.1.2 Boundary Layer Theory (125)1283.1.3 Two-Phase Boundary Layers (126)1283.2 Mass Transfer in Countercurrent Flows1283.2.1 Velocity Distribution (129)1223.2.2 Concentration Distribution (131)1333.2.3 Comparison Between Co-current and Countercurrent Flows (132)1333.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)1333.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)1333.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)149	2.6.2 Effect of Interface Waves (107)	
Chapter 3 Mass Transfer Theories1223.1 Linear Mass Transfer Theory1223.1.1 Model Theories (123)1233.1.2 Boundary Layer Theory (125)1283.1.3 Two-Phase Boundary Layers (126)1283.2 Mass Transfer in Countercurrent Flows1283.2.1 Velocity Distribution (129)12.2 Concentration Distribution (131)3.2.2 Concentration Distribution (131)13.3 Comparison Between Co-current and Countercurrent Flows (132)3.3 Nonlinear Mass Transfer1333.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)1333.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)133.3 Nonlinear Mass Transfer in the Boundary Layer (138)	2.6.3 Photobioreactor Model (110)	
3.1 Linear Mass Transfer Theory1223.1.1 Model Theories (123)1.1 Model Theories (123)3.1.2 Boundary Layer Theory (125)1.1 Two-Phase Boundary Layers (126)3.1 Two-Phase Boundary Layers (126)1283.2 Mass Transfer in Countercurrent Flows1283.2.1 Velocity Distribution (129)12.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)1333.3 Nonlinear Mass Transfer1333.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)1333.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)133	References	119
 3.1.1 Model Theories (123) 3.1.2 Boundary Layer Theory (125) 3.1.3 Two-Phase Boundary Layers (126) 3.2 Mass Transfer in Countercurrent Flows 128 3.2.1 Velocity Distribution (129) 3.2.2 Concentration Distribution (131) 3.2.3 Comparison Between Co-current and Countercurrent Flows (132) 3.3 Nonlinear Mass Transfer 133 3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135) 3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136) 3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138) 	Chapter 3 Mass Transfer Theories	122
 3.1.2 Boundary Layer Theory (125) 3.1.3 Two-Phase Boundary Layers (126) 3.2 Mass Transfer in Countercurrent Flows 3.2.1 Velocity Distribution (129) 3.2.2 Concentration Distribution (131) 3.2.3 Comparison Between Co-current and Countercurrent Flows (132) 3.3 Nonlinear Mass Transfer 3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135) 3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136) 3.3 Nonlinear Mass Transfer in the Boundary Layer (138) 	3.1 Linear Mass Transfer Theory	122
 3.1.3 Two-Phase Boundary Layers (126) 3.2 Mass Transfer in Countercurrent Flows 3.2.1 Velocity Distribution (129) 3.2.2 Concentration Distribution (131) 3.2.3 Comparison Between Co-current and Countercurrent Flows (132) 3.3 Nonlinear Mass Transfer 3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135) 3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136) 3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138) 	3.1.1 Model Theories (123)	
3.2 Mass Transfer in Countercurrent Flows 1283.2.1 Velocity Distribution (129)3.2.2 Concentration Distribution (131)3.2.3 Comparison Between Co-current and Countercurrent Flows (132)133 3.3 Nonlinear Mass Transfer 1333.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)1333.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	3.1.2 Boundary Layer Theory (125)	
 3.2.1 Velocity Distribution (129) 3.2.2 Concentration Distribution (131) 3.2.3 Comparison Between Co-current and Countercurrent Flows (132) 3.3 Nonlinear Mass Transfer 3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135) 3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136) 3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138) 	3.1.3 Two-Phase Boundary Layers (126)	
 3.2.2 Concentration Distribution (131) 3.2.3 Comparison Between Co-current and Countercurrent Flows (132) 3.3 Nonlinear Mass Transfer 133 3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135) 3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136) 3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138) 	3.2 Mass Transfer in Countercurrent Flows	128
 3.2.3 Comparison Between Co-current and Countercurrent Flows (132) 3.3 Nonlinear Mass Transfer 3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135) 3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136) 3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138) 	3.2.1 Velocity Distribution (129)	
3.3 Nonlinear Mass Transfer 1333.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)1333.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)1363.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	3.2.2 Concentration Distribution (131)	
3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135) 3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136) 3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	3.2.3 Comparison Between Co-current and Countercurrent Flows (132)	
3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136) 3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	3.3 Nonlinear Mass Transfer	133
3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	3.3.1 Influence of Intensive Mass Transfer on the Hydrodynamics (135)	
	3.3.2 Boundary Conditions of the Nonlinear Mass Transfer Problem (136)	
3.3.4 Two-Phase Systems (142)	3.3.3 Nonlinear Mass Transfer in the Boundary Layer (138)	
	3.3.4 Two-Phase Systems (142)	

3.3.5 Nonlinear Mass Transfer and the Marangoni Effect (149)	
3.4 Examples	155
3.4.1 Heat Transfer in the Conditions of Nonlinear Mass Transfer (155)	
3.4.2 Multicomponent Mass Transfer (158)	
3.4.3 Concentration Effects (160)	
3.4.4 Influence of High Concentration on the Mass Transfer Rate (166)	
3.4.5 Nonlinear Mass Transfer in Countercurrent Flows (172)	
References	173

Part 2

Theoretical Analysis of Models

Chapter 4 Qualitative Analysis	178
4.1 Generalized Analysis	178
4.1.1 Generalized Variables (178)	
4.1.2 Mass Transfer with a Chemical Reaction (179)	
4.1.3 Nonstationary Processes (181)	
4.1.4 Steady-State Processes (181)	
4.1.5 Effect of the Chemical Reaction Rate (182)	
4.2 Mechanism of Gas–Liquid Chemical Reactions	183
4.2.1 Irreversible Chemical Reactions (183)	
4.2.1 Homogenous Catalytic Reactions (193)	
4.2.3 Reversible Chemical Reactions (196)	
4.2.4 Relationships Between the Chemical Equilibrium and the Physical Equilibrium	brium
During Absorption (199)	
4.3 Comparative Qualitative Analysis for Process Mechanism Identification	201
4.3.1 Comparison of the Nonlinear Effects (201)	
4.3.2 Nonstationary Absorption Mechanism (211)	
4.3.3 Nonstationary Evaporation Kinetics (218)	
4.4 Example	225
4.4.1 Sulfuric Acid Alkylation Process in a Film Flow Reactor (225)	
References	229

Chapter 5 Quantitative Analysis	232
5.1 Scale-up	232
5.1.1 Similarity and Scale-up (233)	
5.1.2 Scale Effect (238)	
5.1.3 Diffusion Model (240)	
5.1.4 Scale-up Theory (242)	
5.1.5 Axial Mixing (243)	
5.1.6 Evaluation of the Scale Effect (245)	
5.1.7 Hydrodynamic Modeling (245).	
5.2 Average Concentration Model and Scale-up	247
5.2.1 Diffusion-Type Model (248)	
5.2.2 Influence of the Radial Nonuniformity of the Velocity Distribution on the H	Process
Efficiency (249)	
5.2.3 Scale Effect (252)	
5.2.4 Average Concentration Model (252)	
5.2.5 Scale Effect Modeling (255)	
5.2.6 Scale-up Parameter Identification (256)	
5.3 Statistical Analysis	257
5.3.1 Basic Terms (258)	
5.3.2 Statistical Treatment of Experimental Data (270)	
5.3.3 Estimates of the Expectation and the Dispersion (270)	
5.3.4 Tests of Hypotheses (272)	
5.3.5 Dispersion Analysis (275)	
5.3.6 Significance of Parameter Estimates and Model Adequacy (277)	
5.3.7 Model Suitability (280)	
5.3.8 Adequacy of the Theoretical Models and Model Theories (281).	
5.4 Example	283
5.4.1 Statistical Analysis of Diffusion-Type Models (283)	
References	284
Chapter 6 Stability Analysis	285
6.1 Stability Theory	285
6.1.1 Evolution Equations (285)	
6.1.2 Bifurcation Theory (289)	
6.1.3 Eigenvalue Problem (292)	

6.2 Hydrodynamic Stability	294
6.2.1 Fundamental Equations (294)	
6.2.2 Power Theory (295)	
6.2.3 Linear Theory (297)	
6.2.4 Stability, Bifurcations, and Turbulence (299)	
6.2.5 Stability of Parallel Flows (301)	
6.3 Orr–Sommerfeld Equation	302
6.3.1 Parallel Flows (303)	
6.3.2 Almost Parallel Flows (303)	
6.3.3 Linear Stability and Nonlinear Mass Transfer (304)	
6.4 Self-Organizing Dissipative Structures	314
6.4.1 Nonlinear Mass Transfer in the Boundary Layer (317)	
6.4.2 Gas Absorption (326)	
6.4.3 Liquid Evaporation (354)	
6.5 Examples	366
6.5.1 Gas–Liquid System (366)	
6.5.2 Liquid–Liquid System (370)	
6.5.3 Effect of Concentration (374).	
6.5.4 Effect of Temperature (378)	
References	380

Part 3

Calculation Problems

Chapter 7 Solution of Differential Equations	384
7.1 Analytical Methods	384
7.1.1 Green's Functions (384)	
7.1.2 Similarity Variables Method (388)	
7.1.3 Eigenvalue Problem (388)	
7.1.4 Laplace Transformation (390)	
7.2 Perturbation Methods	392
7.2.1 Expansions with Respect to a Parameter (392)	
7.2.2 Expansions with Respect to a Coordinate (395)	

7.2.3 Nonuniform Expansions (Poincaret–Lighthill–Ho method) (396)	
7.3 Numerical Methods	399
7.3.1 Finite Differences Method (399)	
7.3.2 Finite Elements Method (400)	
7.4 Examples	401
7.4.1 Application of Green's Functions (401)	
7.4.2 Sturm–Liouville Problem (402)	
References	403
Chapter 8 Parameter Identification (Estimation)	405
8.1 Inverse Problems	405
8.1.1 Direct and Inverse Problems (405)	
8.1.2 Types of Inverse Problems (406)	
8.1.3 Incorrectness of the Inverse Problems (407)	
8.2 Sets and Metric Spaces	409
8.2.1 Metrics (409)	
8.2.2 Linear Spaces (410)	
8.2.3 Functional (411)	
8.2.4 Operator (412)	
8.2.5 Functional of the Misfit (413)	
8.2.6 Some Properties of the Direct and Inverse Operators (414)	
8.3 Incorrectness of the Inverse Problems	415
8.3.1 Correctness After Hadamard (416)	
8.3.2 Correctness After Tikhonov (417)	
8.4 Methods for Solving Incorrect (Ill-Posed) Problems	417
8.4.1 Method of Selection (419)	
8.4.2 Method of Quasi-Solutions (420)	
8.4.3 Method of Substitution of Equations (420)	
8.4.4 Method of the Quasi-Reverse (420)	
8.4.5 Summary (420)	
8.5 Methods for Solving Essentially Ill-Posed Problems	420
8.5.1 Regularization Operator (421)	
8.5.2 Variational Approach (422)	
8.5.2.1 Stabilizing Functional (423)	

8.5.2.2 Smoothing Functional (423)

8.5.3 Iterative Approach (424)

8.5.3.1 Gradient Methods (424)

8.5.3.2 Uniqueness of the Solution (426)

8.5.3.3 Approximate Equations (427)

8.5.3.4 Criteria for Stopping the Iterations (428)

8.6 Parameter Identification in Different Types of Models 431

- 8.6.1 Regression Models (431)
- 8.6.2 Selection Methods (432)

8.6.3 Variational Regularization (434)

8.6.4 Similarity Theory Models (435)

8.6.5 Diffusion-Type Models (436)

8.6.5.1 Determination of the Heat Conductivity Coefficients in Inverse Heat Transfer Problems (436)

8.6.5.2 Iterative Algorithm (437)

8.6.6 Theoretical Models and Model Theories (439)

8.7 Minimum of the Least-Squares Function

- 8.7.1 Incorrectness of the Inverse Problem (440)
- 8.7.2 Incorrectness of the Least Squares Function Method (441)
- 8.7.3 Regularization of the Iterative Method for Parameter Identification (442)
- 8.7.4 Iteration Step Determination and Iteration Stop Criterion (444)
- 8.7.5 Iterative Algorithm (445)
- 8.7.6 Correct Problem Solution (446)

8.7.7 Effect of the Regularization Parameter (447)

8.7.8 Incorrect Problem Solution (447)

8.7.9 Essentially Incorrect Problem Solution (449)

8.7.10 General Case (450)

8.7.11 Statistical Analysis of Model Adequacy (452)

8.7.12 Comparison Between Correct and Incorrect Problems (454)

8.8 Multiequation Models

8.8.1 Problem Formulation (457)

8.8.2 Fermentation System Modeling (460)

8.8.2.1 Experimental Data (461)

8.8.2.2 Zeroth-Order Approximations of the Model Parameters (462)

456

439

8.8.2.3 First-Order Approximations of the Parameters (463)	
8.9 Experiment Design	466
8.9.1 Experimental Plans of Modeling (467)	
8.9.2 Parameter Identification (468)	
8.9.3 Significance of Parameters (470)	
8.9.4 Adequacy of Models (471)	
8.9.5 Randomized Plans (471)	
8.9.6 Full and Fractional Factor Experiment (473)	
8.9.7 Compositional Plans (477)	
8.10 Examples	478
8.10.1 Regression Models (478)	
8.10.2 Statistical Analysis of the Parameter Significance and Model Adequacy	y of the
Regression Models (484)	
8.10.3 Clapeyron and Antoan Models (485)	
8.10.4 Incorrectness Criterion (488)	
8.10.5 Increase of the Exactness of the Identification Problem Solution (490)	
8.10.6 Incomplete Experimental Data Cases (490)	
References	502
Chapter 9 Optimization	507
Chapter 9 Optimization 9.1 Analytical Methods	
Chapter 9 Optimization 9.1 Analytical Methods 9.1.1 Unconstraints Minimization (506)	507
Chapter 9 Optimization 9.1 Analytical Methods 9.1.1 Unconstraints Minimization (506) 9.1.2 Constraints Minimization (507)	507
Chapter 9 Optimization 9.1 Analytical Methods 9.1.1 Unconstraints Minimization (506) 9.1.2 Constraints Minimization (507) 9.1.3 Calculus of Variations (507)	507
Chapter 9 Optimization 9.1 Analytical Methods 9.1.1 Unconstraints Minimization (506) 9.1.2 Constraints Minimization (507) 9.1.3 Calculus of Variations (507) 9.1.4 Solution of a Set of Nonlinear Equations (510)	507 506
Chapter 9 Optimization 9.1 Analytical Methods 9.1.1 Unconstraints Minimization (506) 9.1.2 Constraints Minimization (507) 9.1.3 Calculus of Variations (507) 9.1.4 Solution of a Set of Nonlinear Equations (510) 9.2 Numerical Methods	507
Chapter 9 Optimization 9.1 Analytical Methods 9.1.1 Unconstraints Minimization (506) 9.1.2 Constraints Minimization (507) 9.1.3 Calculus of Variations (507) 9.1.4 Solution of a Set of Nonlinear Equations (510) 9.2 Numerical Methods 9.2.1 Linear Programming (511)	507 506
 Chapter 9 Optimization 9.1 Analytical Methods 9.1.1 Unconstraints Minimization (506) 9.1.2 Constraints Minimization (507) 9.1.3 Calculus of Variations (507) 9.1.4 Solution of a Set of Nonlinear Equations (510) 9.2 Numerical Methods 9.2.1 Linear Programming (511) 9.2.2 Nonlinear Programming (512) 	507 506 511
 Chapter 9 Optimization 9.1 Analytical Methods 9.1.1 Unconstraints Minimization (506) 9.1.2 Constraints Minimization (507) 9.1.3 Calculus of Variations (507) 9.1.4 Solution of a Set of Nonlinear Equations (510) 9.2 Numerical Methods 9.2.1 Linear Programming (511) 9.2.2 Nonlinear Programming (512) 9.3 Dynamic Programming and the Principle of the Maximum 	507 506
 Chapter 9 Optimization 9.1 Analytical Methods 9.1.1 Unconstraints Minimization (506) 9.1.2 Constraints Minimization (507) 9.1.3 Calculus of Variations (507) 9.1.4 Solution of a Set of Nonlinear Equations (510) 9.2 Numerical Methods 9.2.1 Linear Programming (511) 9.2.2 Nonlinear Programming (512) 9.3 Dynamic Programming and the Principle of the Maximum 9.3.1 Functional Equations (516) 	507 506 511
 Chapter 9 Optimization 9.1 Analytical Methods 9.1.1 Unconstraints Minimization (506) 9.1.2 Constraints Minimization (507) 9.1.3 Calculus of Variations (507) 9.1.4 Solution of a Set of Nonlinear Equations (510) 9.2 Numerical Methods 9.2.1 Linear Programming (511) 9.2.2 Nonlinear Programming (512) 9.3 Dynamic Programming and the Principle of the Maximum 9.3.1 Functional Equations (516) 9.3.2 Principle of Optimality (517) 	507 506 511
 Chapter 9 Optimization 9.1 Analytical Methods 9.1.1 Unconstraints Minimization (506) 9.1.2 Constraints Minimization (507) 9.1.3 Calculus of Variations (507) 9.1.4 Solution of a Set of Nonlinear Equations (510) 9.2 Numerical Methods 9.2.1 Linear Programming (511) 9.2.2 Nonlinear Programming (512) 9.3 Dynamic Programming (516) 9.3.1 Functional Equations (516) 9.3.2 Principle of Optimality (517) 9.3.3 Principle of the Maximum (517) 	507 506 511 516
 Chapter 9 Optimization 9.1 Analytical Methods 9.1.1 Unconstraints Minimization (506) 9.1.2 Constraints Minimization (507) 9.1.3 Calculus of Variations (507) 9.1.4 Solution of a Set of Nonlinear Equations (510) 9.2 Numerical Methods 9.2.1 Linear Programming (511) 9.2.2 Nonlinear Programming (512) 9.3 Dynamic Programming and the Principle of the Maximum 9.3.1 Functional Equations (516) 9.3.2 Principle of Optimality (517) 	507 506 511

References

Part 4

Chemical Plant Systems

Chapter 10 Systems Analysis	524
10.1 Simulation of Chemical Plant Systems	524
10.1.1 Model of Chemical Plant Systems (524)	
10.1.2 Simulation Methods (525)	
10.1.3 Sequential Module (Hierarchical) Approach (526)	
10.1.4 Acyclic Chemical Plant Systems (526)	
10.1.5 Cyclic Chemical Plant Systems (528)	
10.1.6 Independent Contours (530)	
10.1.7 Breaking Sets (532)	
10.1.8 Optimal Order (534)	
10.2 Simulation for Specified Outlet Variables	535
10.2.1 Zone of Influence (536)	
10.2.2 Absolutely Independent Influence (537)	
10.2.3 Independent Influence (538)	
10.2.4 Combined Zones (540)	
10.3 Models of Separate Blocks	540
10.3.1 Types of Modules (541)	
10.3.2 Heat Transfer (542)	
10.3.3 Separation (543)	
10.3.4 Chemical Processes (545)	
References	546
Chapter 11 Synthesis of Systems	547
11.1 Optimal Synthesis of Chemical Plants	547
11.1.1 Optimization (547)	
11.1.2 Optimal Synthesis (547)	
11.1.3 Main Problems (548)	

11.1.4 Methods of Synthesis (548)	
11.1.5 Optimal Synthesis of a System for Recuperative Heat Transfer (550)	
11.2 Renovation of Chemical Plant Systems	553
11.2.1 Mathematical Description (553)	
11.2.2 Mathematical Models (555)	
11.2.3 Main Problems (556)	
11.2.4 Renovation by Optimal Synthesis of Chemical Plant Systems (557)	
11.2.5 Renovation by Introduction of Highly Intensive Equipment (558)	
11.2.6 Renovation by Introduction of Highly Effective Processes (558)	
References	559
Conclusion	561
Index	563

Preface

The role of *theory* in science was formulated very brilliantly by Max Planck:

"Experimenters are the striking force of science. The experiment is a question which science puts to nature. The measurement is the registration of nature's answer. But before the question is put to nature, it must be formulated. Before the measurement result is used, it must be explained, i.e., the answer must be understood correctly. These two problems are obligations of the theoreticians."

Chemical engineering is an experimental science, but theory permits us to formulate correct experimental conditions and to understand correctly the experimental results. The theoretical methods of chemical engineering for modeling and simulation of industrial processes are surveyed in this book.

Theoretical chemical engineering solves the problems that spring up from the necessity for a quantitative description of the processes in the chemical industry. They are quite different at the different stages of the quantitative description, i.e., a wide circle of theoretical methods are required for their solutions.

Modeling and simulation are a united approach to obtain a quantitative description of the processes and systems in chemical engineering and chemical technology, which is necessary to clarify the process mechanism or for optimal process design, process control, and plant renovation.

Modeling is the creation of the mathematical model, i.e., construction of the mathematical description (on the basis of the process mechanism), calculation of the model parameters (using experimental data), and statistical analysis of the model adequacy.

Simulation is a quantitative description of the processes by means of algorithms and software for the solution of the model equations and numerical (mathematical) experiments.

The processes in chemical engineering are composed of many simple processes, such as hydrodynamic, diffusion, heat conduction, and chemical processes. The models are created in the approximations of continuous media mechanics.

The complex process model is constructed on the basis of the physical mechanism hypothesis. In cases where full information is available, it is possible to create a theoretical type of model. If the information is insufficient (it is not possible to formulate the hydrodynamic influence on the heat and mass transfer), the model is pattern theory, diffusion type or similarity criteria type. The absence of information leads to the regression model.

The theoretical analysis of the models solves qualitative, quantitative, and stability problems. The qualitative analysis clarifies the process mechanism or similarity conditions. The quantitative analysis solves the problems related to the scale-up and model adequacy. The stability analysis explains the increase of the process efficiency as a result of self-organizing dissipative structures.

All theoretical methods are related to calculation problems. The solutions of the model equations use analytical and numerical methods. The identification (estimation) of the model parameters leads to the solutions of the inverse problems, but very often they are incorrect (ill-posed) and need the application of regularization methods, using a variational or an iterative approach. The solutions of many chemical engineering problems (especially parameter identification) use minimization methods.

The book ideology briefly described above addresses the theoretical foundation of chemical engineering modeling and simulations. It is concerned with building, developing, and applying the mathematical models that can be applied successfully for the solution of chemical engineering problems. Our emphasis is on the description and evaluation of models and simulations. The theory selected reflects our own interests and the needs of models employed in chemical and process engineering. We hope that the problems covered in this book will provide the readers (Ph.D. students, researchers, and teachers) with the tools to permit the solution of various problems in modern chemical engineering, applied science, and other fields through modeling and simulations.

The solutions of the theoretical problems of modeling and simulations employ a number of mathematical methods (exact, asymptotic, numerical, etc.) whose adoption by engineers will permit the optimal process design, process control, and plant renovation.

The modeling and the simulations of chemical systems and plants can be achieved very often through a hierarchical modeling. This approach uses the structural analysis of the process systems. The result of the structural analysis is a quantitative description allowing further optimal process design, process control, and plant renovation. The effectiveness of the optimal solutions can be enhanced if they are combined with suitable methods of optimal synthesis. The latter is a methodical basis and a guide for process system renovations.

The book incorporates a lot of fundamental knowledge, but it is assumed that the readers are familiar with the mathematics at engineering level of usual university courses.

The above comments are the main reasons determining the structure of this book.

Part 1 concerns model construction problems. The mechanics of the continuum approach is used for modeling hydrodynamic, diffusion, and heat conduction processes as

basic (elementary) processes in chemical engineering. The modeling of complex processes in chemical engineering is presented on the basis of the relation between the process mechanism and the mathematical description. The models are classified in accordance with the knowledge available concerning the process mechanisms. This means a situation when a theoretical model is available, i.e., sufficient knowledge of the process mechanism as well as the opposite situation of knowledge deficiency, which leads to regression models. Theoretical diffusion, dimensionless, and regression types of models are illustrated. The linear, nonlinear, and pattern mass transfer theories are considered too.

Part 2 focuses on theoretical analysis of chemical engineering process models. The qualitative analysis uses generalized (dimensionless) variables and shows the degree to which the different physical effects participate in a complex process. On this basis, similarity criteria and physical modeling conditions are shown. The quantitative analysis concerns the scale-up problems and statistical analysis of the models. The stability analysis of the models permits the nonlinear mass transfer effects to be obtained and the creation of the self-organizing dissipative structures with very intensive mass transfer.

Part 3 addresses the calculation problems in modeling and simulation. Different analytical and numerical methods for the solution of differential equations are considered. The estimation of the model parameters is related to the solutions of the ill-posed inverse problems. An iterative method for incorrect problem solutions is presented. Different methods for function minimization are shown for the purposes of process optimization and model parameter identification.

Part 4 examines modeling and simulation of the chemical plant systems. The simulation of the systems on the basis of structure system analysis is presented. The optimal synthesis of chemical plants is considered in the case of the optimal synthesis of heat recuperation systems.

This book can be used as a basis for theoretical and experimental investigations in the field of the chemical engineering. The methods and analyses presented permit theoretical problems to be solved, the experimental conditions to be correctly formulated, and the experimental results to be interpreted correctly.

The fundamental suggestion in this book is the necessity for full correspondence (direct and inverse) between the separated physical effect in the process and the mathematical (differential) operator in the model equation.

The main part of this book has a monographic character and the examples are from the author's papers. The book uses the author's lectures "Course of modeling and optimization"

(subject chemical cybernetics in the Faculty of Chemistry of Sofia University "St. Kliment Ohridski"), "Course of modeling and simulation of chemical plant systems" (Bourgas University "Prof. Asen Zlatarov"), and "Master's classes of theoretical chemical engineering" (Bourgas University "Prof. Asen Zlatarov"). That is why, as a whole, it is possible for it to be used as teaching material for modeling and simulation. This book proposes an exact formulation and the correct solution of quantitatively described problems in chemical engineering. It may be useful for scientists, Ph.D. students, and undergraduate students.

Some of the results presented in the book were obtained with financial support from the National Fund "Scientific Researches" of the Republic of Bulgaria (contracts no. TH-154/87, TH-162/87, TH-89/91, TH-127/91, TH-508/95, TH-4/99, TH-1001/00, TH-1506/05).

The author would like to thank Assoc. Prof. Jordan Hristov, Assoc. Prof. Natasha Vaklieva-Bancheva, Assoc. Prof. Boyan Ivanov, Assist. Prof. Maria Doichinova, Assist. Prof. Petya Popova, Assist. Prof. Elisaveta Shopova and Dipl. Eng., M. Sc. Boyan Boyadjiev for their help in the preparation of this book.

Ch